ethers-rs/ethers-contract/tests/it/contract.rs

928 lines
33 KiB
Rust

use super::common::*;
use ethers_contract::{
abigen, ContractFactory, ContractInstance, EthAbiType, EthEvent, LogMeta, Multicall,
MulticallError, MulticallVersion,
};
use ethers_core::{
abi::{encode, AbiEncode, Token, Tokenizable},
types::{
transaction::eip712::Eip712, Address, BlockId, Bytes, Filter, ValueOrArray, H160, H256,
I256, U256,
},
utils::{keccak256, Anvil},
};
use ethers_derive_eip712::*;
use ethers_providers::{Http, Middleware, MiddlewareError, Provider, StreamExt};
use ethers_signers::{LocalWallet, Signer};
use std::{convert::TryFrom, iter::FromIterator, sync::Arc, time::Duration};
#[derive(Debug)]
pub struct NonClone<M> {
m: M,
}
#[derive(Debug)]
pub struct MwErr<M: Middleware>(M::Error);
impl<M> MiddlewareError for MwErr<M>
where
M: Middleware,
{
type Inner = M::Error;
fn from_err(src: M::Error) -> Self {
Self(src)
}
fn as_inner(&self) -> Option<&Self::Inner> {
Some(&self.0)
}
}
impl<M: Middleware> std::fmt::Display for MwErr<M> {
fn fmt(&self, _f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Ok(())
}
}
impl<M: Middleware> std::error::Error for MwErr<M> {}
impl<M: Middleware> Middleware for NonClone<M> {
type Error = MwErr<M>;
type Provider = M::Provider;
type Inner = M;
fn inner(&self) -> &Self::Inner {
&self.m
}
}
// this is not a test. It is a compile check. :)
// It exists to ensure that trait bounds on contract internal behave as
// expected. It should not be run
fn it_compiles() {
let (abi, _bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
// launch anvil
let anvil = Anvil::new().spawn();
let client = Provider::<Http>::try_from(anvil.endpoint())
.unwrap()
.interval(Duration::from_millis(10u64));
// Works (B == M, M: Clone)
let c: ContractInstance<&Provider<Http>, Provider<Http>> =
ContractInstance::new(H160::default(), abi.clone(), &client);
let _ = c.method::<(), ()>("notARealMethod", ());
// Works (B == &M, M: Clone)
let c: ContractInstance<Provider<Http>, Provider<Http>> =
ContractInstance::new(H160::default(), abi.clone(), client.clone());
let _ = c.method::<(), ()>("notARealMethod", ());
let non_clone_mware = NonClone { m: client };
// Works (B == &M, M: !Clone)
let c: ContractInstance<&NonClone<Provider<Http>>, NonClone<Provider<Http>>> =
ContractInstance::new(H160::default(), abi, &non_clone_mware);
let _ = c.method::<(), ()>("notARealMethod", ());
// // Fails (B == M, M: !Clone)
// let c: ContractInternal<NonClone<Provider<Http>>, NonClone<Provider<Http>>> =
// ContractInternal::new(H160::default(), abi, non_clone_mware);
// let _ = c.method::<(), ()>("notARealMethod", ());
}
#[tokio::test]
async fn deploy_and_call_contract() {
let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
// launch anvil
let anvil = Anvil::new().spawn();
// Instantiate the clients. We assume that clients consume the provider and the wallet
// (which makes sense), so for multi-client tests, you must clone the provider.
let addrs = anvil.addresses().to_vec();
let addr2 = addrs[1];
let client = connect(&anvil, 0);
let client2 = connect(&anvil, 1);
// create a factory which will be used to deploy instances of the contract
let factory = ContractFactory::new(abi, bytecode, client.clone());
// `send` consumes the deployer so it must be cloned for later re-use
// (practically it's not expected that you'll need to deploy multiple instances of
// the _same_ deployer, so it's fine to clone here from a dev UX vs perf tradeoff)
let deployer = factory.deploy("initial value".to_string()).unwrap().legacy();
// dry runs the deployment of the contract. takes the deployer by reference, no need to
// clone.
deployer.call().await.unwrap();
let (contract, receipt) = deployer.clone().send_with_receipt().await.unwrap();
assert_eq!(receipt.contract_address.unwrap(), contract.address());
let get_value = contract.method::<_, String>("getValue", ()).unwrap();
let last_sender = contract.method::<_, Address>("lastSender", ()).unwrap();
// the initial value must be the one set in the constructor
let value = get_value.clone().call().await.unwrap();
assert_eq!(value, "initial value");
// need to declare the method first, and only then send it
// this is because it internally clones an Arc which would otherwise
// get immediately dropped
let contract_call =
contract.connect(client2.clone()).method::<_, H256>("setValue", "hi".to_owned()).unwrap();
let calldata = contract_call.calldata().unwrap();
let _gas_estimate = contract_call.estimate_gas().await.unwrap();
let contract_call = contract_call.legacy();
let pending_tx = contract_call.send().await.unwrap();
let tx = client.get_transaction(*pending_tx).await.unwrap().unwrap();
let _tx_receipt = pending_tx.await.unwrap().unwrap();
assert_eq!(last_sender.clone().call().await.unwrap(), addr2);
assert_eq!(get_value.clone().call().await.unwrap(), "hi");
assert_eq!(tx.input, calldata);
// we can also call contract methods at other addresses with the `at` call
// (useful when interacting with multiple ERC20s for example)
let contract2_addr = deployer.send().await.unwrap().address();
let contract2 = contract.at(contract2_addr);
let init_value: String =
contract2.method::<_, String>("getValue", ()).unwrap().call().await.unwrap();
let init_address =
contract2.method::<_, Address>("lastSender", ()).unwrap().call().await.unwrap();
assert_eq!(init_address, Address::zero());
assert_eq!(init_value, "initial value");
// methods with multiple args also work
let _tx_hash = contract
.method::<_, H256>("setValues", ("hi".to_owned(), "bye".to_owned()))
.unwrap()
.legacy()
.send()
.await
.unwrap()
.await
.unwrap();
}
#[tokio::test]
#[cfg(feature = "abigen")]
async fn get_past_events() {
let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
let anvil = Anvil::new().spawn();
let client = connect(&anvil, 0);
let address = client.get_accounts().await.unwrap()[0];
let contract = deploy(client.clone(), abi, bytecode).await;
// make a call with `client`
let func = contract.method::<_, H256>("setValue", "hi".to_owned()).unwrap().legacy();
let tx = func.send().await.unwrap();
let _receipt = tx.await.unwrap();
// and we can fetch the events
let logs: Vec<ValueChanged> = contract
.event()
.from_block(0u64)
.topic1(address) // Corresponds to the first indexed parameter
.query()
.await
.unwrap();
assert_eq!(logs[0].new_value, "initial value");
assert_eq!(logs[1].new_value, "hi");
assert_eq!(logs.len(), 2);
// and we can fetch the events at a block hash
let hash = client.get_block(1).await.unwrap().unwrap().hash.unwrap();
let logs: Vec<ValueChanged> = contract
.event()
.at_block_hash(hash)
.topic1(address) // Corresponds to the first indexed parameter
.query()
.await
.unwrap();
assert_eq!(logs[0].new_value, "initial value");
assert_eq!(logs.len(), 1);
}
#[tokio::test]
#[cfg(feature = "abigen")]
async fn get_events_with_meta() {
let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
let anvil = Anvil::new().spawn();
let client = connect(&anvil, 0);
let address = anvil.addresses()[0];
let contract = deploy(client.clone(), abi, bytecode).await;
// and we can fetch the events
let logs: Vec<(ValueChanged, LogMeta)> = contract
.event()
.from_block(0u64)
.topic1(address) // Corresponds to the first indexed parameter
.query_with_meta()
.await
.unwrap();
assert_eq!(logs.len(), 1);
let (log, meta) = &logs[0];
assert_eq!(log.new_value, "initial value");
assert_eq!(meta.address, contract.address());
assert_eq!(meta.log_index, 0.into());
assert_eq!(meta.block_number, 1.into());
let block = client.get_block(1).await.unwrap().unwrap();
assert_eq!(meta.block_hash, block.hash.unwrap());
assert_eq!(block.transactions.len(), 1);
let tx = block.transactions[0];
assert_eq!(meta.transaction_hash, tx);
assert_eq!(meta.transaction_index, 0.into());
}
#[tokio::test]
async fn call_past_state() {
let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
let anvil = Anvil::new().spawn();
let client = connect(&anvil, 0);
let contract = deploy(client.clone(), abi, bytecode).await;
let deployed_block = client.get_block_number().await.unwrap();
// assert initial state
let value =
contract.method::<_, String>("getValue", ()).unwrap().legacy().call().await.unwrap();
assert_eq!(value, "initial value");
// make a call with `client`
let _tx_hash = *contract
.method::<_, H256>("setValue", "hi".to_owned())
.unwrap()
.legacy()
.send()
.await
.unwrap();
// assert new value
let value =
contract.method::<_, String>("getValue", ()).unwrap().legacy().call().await.unwrap();
assert_eq!(value, "hi");
// assert previous value
let value = contract
.method::<_, String>("getValue", ())
.unwrap()
.legacy()
.block(BlockId::Number(deployed_block.into()))
.call()
.await
.unwrap();
assert_eq!(value, "initial value");
// Here would be the place to test EIP-1898, specifying the `BlockId` of `call` as the
// first block hash. However, Ganache does not implement this :/
// let hash = client.get_block(1).await.unwrap().unwrap().hash.unwrap();
// let value = contract
// .method::<_, String>("getValue", ())
// .unwrap()
// .block(BlockId::Hash(hash))
// .call()
// .await
// .unwrap();
// assert_eq!(value, "initial value");
}
#[tokio::test]
#[ignore]
async fn call_past_hash_test() {
// geth --dev --http --http.api eth,web3
let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
let provider = Provider::<Http>::try_from("http://localhost:8545").unwrap();
let deployer = provider.get_accounts().await.unwrap()[0];
let client = Arc::new(provider.with_sender(deployer));
let contract = deploy(client.clone(), abi, bytecode).await;
let deployed_block = client.get_block_number().await.unwrap();
// assert initial state
let value = contract.method::<_, String>("getValue", ()).unwrap().call().await.unwrap();
assert_eq!(value, "initial value");
// make a call with `client`
let _tx_hash =
*contract.method::<_, H256>("setValue", "hi".to_owned()).unwrap().send().await.unwrap();
// assert new value
let value = contract.method::<_, String>("getValue", ()).unwrap().call().await.unwrap();
assert_eq!(value, "hi");
// assert previous value using block hash
let hash = client.get_block(deployed_block).await.unwrap().unwrap().hash.unwrap();
let value = contract
.method::<_, String>("getValue", ())
.unwrap()
.block(BlockId::Hash(hash))
.call()
.await
.unwrap();
assert_eq!(value, "initial value");
}
#[tokio::test]
#[cfg(feature = "abigen")]
async fn watch_events() {
let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
let anvil = Anvil::new().spawn();
let client = connect(&anvil, 0);
let contract = deploy(client.clone(), abi.clone(), bytecode).await;
// We spawn the event listener:
let event = contract.event::<ValueChanged>();
let mut stream = event.stream().await.unwrap();
// Also set up a subscription for the same thing
let ws = Provider::connect(anvil.ws_endpoint()).await.unwrap();
let contract2 = ethers_contract::Contract::new(contract.address(), abi, ws.into());
let event2 = contract2.event::<ValueChanged>();
let mut subscription = event2.subscribe().await.unwrap();
let mut subscription_meta = event2.subscribe().await.unwrap().with_meta();
let num_calls = 3u64;
// and we make a few calls
let num = client.get_block_number().await.unwrap();
for i in 0..num_calls {
let call = contract.method::<_, H256>("setValue", i.to_string()).unwrap().legacy();
let pending_tx = call.send().await.unwrap();
let _receipt = pending_tx.await.unwrap();
}
for i in 0..num_calls {
// unwrap the option of the stream, then unwrap the decoding result
let log = stream.next().await.unwrap().unwrap();
let log2 = subscription.next().await.unwrap().unwrap();
let (log3, meta) = subscription_meta.next().await.unwrap().unwrap();
assert_eq!(log.new_value, log3.new_value);
assert_eq!(log.new_value, log2.new_value);
assert_eq!(log.new_value, i.to_string());
assert_eq!(meta.block_number, num + i + 1);
let hash = client.get_block(num + i + 1).await.unwrap().unwrap().hash.unwrap();
assert_eq!(meta.block_hash, hash);
}
}
#[tokio::test]
async fn watch_subscription_events_multiple_addresses() {
let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
let anvil = Anvil::new().spawn();
let client = connect(&anvil, 0);
let contract_1 = deploy(client.clone(), abi.clone(), bytecode.clone()).await;
let contract_2 = deploy(client.clone(), abi.clone(), bytecode).await;
let ws = Provider::connect(anvil.ws_endpoint()).await.unwrap();
let filter = Filter::new()
.address(ValueOrArray::Array(vec![contract_1.address(), contract_2.address()]));
let mut stream = ws.subscribe_logs(&filter).await.unwrap();
// and we make a few calls
let call = contract_1.method::<_, H256>("setValue", "1".to_string()).unwrap().legacy();
let pending_tx = call.send().await.unwrap();
let _receipt = pending_tx.await.unwrap();
let call = contract_2.method::<_, H256>("setValue", "2".to_string()).unwrap().legacy();
let pending_tx = call.send().await.unwrap();
let _receipt = pending_tx.await.unwrap();
// unwrap the option of the stream, then unwrap the decoding result
let log_1 = stream.next().await.unwrap();
let log_2 = stream.next().await.unwrap();
assert_eq!(log_1.address, contract_1.address());
assert_eq!(log_2.address, contract_2.address());
}
#[tokio::test]
async fn build_event_of_type() {
abigen!(
AggregatorInterface,
r#"[
event AnswerUpdated(int256 indexed current, uint256 indexed roundId, uint256 updatedAt)
]"#,
);
let anvil = Anvil::new().spawn();
let client = connect(&anvil, 0);
let event = ethers_contract::Contract::event_of_type::<AnswerUpdatedFilter>(client);
assert_eq!(event.filter, Filter::new().event(&AnswerUpdatedFilter::abi_signature()));
}
#[tokio::test]
async fn signer_on_node() {
let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
// spawn anvil
let anvil = Anvil::new().spawn();
// connect
let provider = Provider::<Http>::try_from(anvil.endpoint())
.unwrap()
.interval(std::time::Duration::from_millis(50u64));
// get the first account
let deployer = provider.get_accounts().await.unwrap()[0];
let client = Arc::new(provider.with_sender(deployer));
let contract = deploy(client, abi, bytecode).await;
// make a call without the signer
let _receipt = contract
.method::<_, H256>("setValue", "hi".to_owned())
.unwrap()
.legacy()
.send()
.await
.unwrap()
.await
.unwrap();
let value: String = contract.method::<_, String>("getValue", ()).unwrap().call().await.unwrap();
assert_eq!(value, "hi");
}
#[tokio::test]
async fn multicall_aggregate() {
// get ABI and bytecode for the Multicall contract
let (multicall_abi, multicall_bytecode) = compile_contract("Multicall3", "Multicall.sol");
// get ABI and bytecode for the NotSoSimpleStorage contract
let (not_so_simple_abi, not_so_simple_bytecode) =
compile_contract("NotSoSimpleStorage", "NotSoSimpleStorage.sol");
// get ABI and bytecode for the SimpleStorage contract
let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol");
// launch anvil
let anvil = Anvil::new().spawn();
// Instantiate the clients. We assume that clients consume the provider and the wallet
// (which makes sense), so for multi-client tests, you must clone the provider.
// `client` is used to deploy the Multicall contract
// `client2` is used to deploy the first SimpleStorage contract
// `client3` is used to deploy the second SimpleStorage contract
// `client4` is used to make the aggregate call
let addrs = anvil.addresses().to_vec();
let addr2 = addrs[1];
let addr3 = addrs[2];
let client = connect(&anvil, 0);
let client2 = connect(&anvil, 1);
let client3 = connect(&anvil, 2);
let client4 = connect(&anvil, 3);
// create a factory which will be used to deploy instances of the contract
let multicall_factory = ContractFactory::new(multicall_abi, multicall_bytecode, client.clone());
let simple_factory = ContractFactory::new(abi.clone(), bytecode.clone(), client2.clone());
let not_so_simple_factory =
ContractFactory::new(not_so_simple_abi, not_so_simple_bytecode, client3.clone());
let multicall_contract = multicall_factory.deploy(()).unwrap().legacy().send().await.unwrap();
let addr = multicall_contract.address();
let simple_contract =
simple_factory.deploy("the first one".to_string()).unwrap().legacy().send().await.unwrap();
let not_so_simple_contract = not_so_simple_factory
.deploy("the second one".to_string())
.unwrap()
.legacy()
.send()
.await
.unwrap();
// Client2 and Client3 broadcast txs to set the values for both contracts
simple_contract
.connect(client2.clone())
.method::<_, H256>("setValue", "reset first".to_owned())
.unwrap()
.legacy()
.send()
.await
.unwrap();
not_so_simple_contract
.connect(client3.clone())
.method::<_, H256>("setValue", "reset second".to_owned())
.unwrap()
.legacy()
.send()
.await
.unwrap();
// get the calls for `value` and `last_sender` for both SimpleStorage contracts
let value = simple_contract.method::<_, String>("getValue", ()).unwrap();
let value2 = not_so_simple_contract.method::<_, (String, Address)>("getValues", ()).unwrap();
let last_sender = simple_contract.method::<_, Address>("lastSender", ()).unwrap();
let last_sender2 = not_so_simple_contract.method::<_, Address>("lastSender", ()).unwrap();
// initiate the Multicall instance and add calls one by one in builder style
let mut multicall = Multicall::new(client4.clone(), Some(addr)).await.unwrap();
// Set version to 1
multicall = multicall.version(MulticallVersion::Multicall);
multicall
.add_call(value, false)
.add_call(value2, false)
.add_call(last_sender, false)
.add_call(last_sender2, false);
let return_data: (String, (String, Address), Address, Address) =
multicall.call().await.unwrap();
assert_eq!(return_data.0, "reset first");
assert_eq!((return_data.1).0, "reset second");
assert_eq!((return_data.1).1, addr3);
assert_eq!(return_data.2, addr2);
assert_eq!(return_data.3, addr3);
// construct broadcast transactions that will be batched and broadcast via Multicall
let broadcast = simple_contract
.connect(client4.clone())
.method::<_, H256>("setValue", "first reset again".to_owned())
.unwrap();
let broadcast2 = not_so_simple_contract
.connect(client4.clone())
.method::<_, H256>("setValue", "second reset again".to_owned())
.unwrap();
// use the already initialised Multicall instance, clearing the previous calls and adding
// new calls. Previously we used the `.call()` functionality to do a batch of calls in one
// go. Now we will use the `.send()` functionality to broadcast a batch of transactions
// in one go
let mut multicall_send = multicall.clone();
multicall_send.clear_calls().add_call(broadcast, false).add_call(broadcast2, false);
// broadcast the transaction and wait for it to be mined
let _tx_receipt = multicall_send.legacy().send().await.unwrap().await.unwrap();
// Do another multicall to check the updated return values
// The `getValue` calls should return the last value we set in the batched broadcast
// The `lastSender` calls should return the address of the Multicall contract, as it is
// the one acting as proxy and calling our SimpleStorage contracts (msg.sender)
let return_data: (String, (String, Address), Address, Address) =
multicall.call().await.unwrap();
assert_eq!(return_data.0, "first reset again");
assert_eq!((return_data.1).0, "second reset again");
assert_eq!((return_data.1).1, multicall_contract.address());
assert_eq!(return_data.2, multicall_contract.address());
assert_eq!(return_data.3, multicall_contract.address());
let addrs = anvil.addresses();
// query ETH balances of multiple addresses
// these keys haven't been used to do any tx
// so should have 100 ETH
multicall
.clear_calls()
.add_get_eth_balance(addrs[4], false)
.add_get_eth_balance(addrs[5], false)
.add_get_eth_balance(addrs[6], false);
let valid_balances = [
U256::from(10_000_000_000_000_000_000_000u128),
U256::from(10_000_000_000_000_000_000_000u128),
U256::from(10_000_000_000_000_000_000_000u128),
];
let balances: (U256, U256, U256) = multicall.call().await.unwrap();
assert_eq!(balances.0, valid_balances[0]);
assert_eq!(balances.1, valid_balances[1]);
assert_eq!(balances.2, valid_balances[2]);
// call_array
multicall
.clear_calls()
.add_get_eth_balance(addrs[4], false)
.add_get_eth_balance(addrs[5], false)
.add_get_eth_balance(addrs[6], false);
let balances: Vec<U256> = multicall.call_array().await.unwrap();
assert_eq!(balances, Vec::from_iter(valid_balances.iter().copied()));
// clear multicall so we can test `call_raw` w/ >16 calls
multicall.clear_calls();
// clear the current value
simple_contract
.connect(client2.clone())
.method::<_, H256>("setValue", "many".to_owned())
.unwrap()
.legacy()
.send()
.await
.unwrap();
multicall.add_calls(
false,
std::iter::repeat(simple_contract.method::<_, String>("getValue", ()).unwrap()).take(17),
);
let tokens = multicall.call_raw().await.unwrap();
let results: Vec<String> = tokens
.into_iter()
.map(|result| {
// decode manually using Tokenizable method
String::from_token(result.unwrap()).unwrap()
})
.collect();
assert_eq!(results, ["many"; 17]);
// test version 2
multicall = multicall.version(MulticallVersion::Multicall2);
// deploy contract with reverting methods
let reverting_contract = {
let (abi, bytecode) =
compile_contract("SimpleRevertingStorage", "SimpleRevertingStorage.sol");
let f = ContractFactory::new(abi, bytecode, client.clone());
f.deploy("This contract can revert".to_string()).unwrap().send().await.unwrap()
};
// reset value
reverting_contract
.connect(client2.clone())
.method::<_, H256>("setValue", ("reset third".to_owned(), false))
.unwrap()
.send()
.await
.unwrap();
// create calls
let set_value_call = reverting_contract
.connect(client.clone())
.method::<_, H256>("setValue", ("this didn't revert".to_owned(), false))
.unwrap();
let set_value_reverting_call = reverting_contract
.connect(client3.clone())
.method::<_, H256>("setValue", ("this reverted".to_owned(), true))
.unwrap();
let get_value_call =
reverting_contract.connect(client2.clone()).method::<_, String>("getValue", false).unwrap();
let get_value_reverting_call =
reverting_contract.connect(client.clone()).method::<_, String>("getValue", true).unwrap();
// .send reverts
// don't allow revert
multicall
.clear_calls()
.add_call(set_value_reverting_call.clone(), false)
.add_call(set_value_call.clone(), false);
multicall.send().await.unwrap_err();
// value has not changed
assert_eq!(get_value_call.clone().call().await.unwrap(), "reset third");
// allow revert
multicall
.clear_calls()
.add_call(set_value_reverting_call.clone(), true)
.add_call(set_value_call.clone(), false);
multicall.send().await.unwrap();
// value has changed
assert_eq!(get_value_call.clone().call().await.unwrap(), "this didn't revert");
// reset value again
reverting_contract
.connect(client2.clone())
.method::<_, H256>("setValue", ("reset third again".to_owned(), false))
.unwrap()
.send()
.await
.unwrap();
// .call reverts
// don't allow revert
multicall
.clear_calls()
.add_call(get_value_reverting_call.clone(), false)
.add_call(get_value_call.clone(), false);
let res = multicall.call::<(String, String)>().await;
let err = res.unwrap_err();
assert!(err.is_revert());
let message = err.decode_revert::<String>().unwrap();
assert!(message.contains("Multicall3: call failed"));
// allow revert -> call doesn't revert, but returns Err(_) in raw tokens
let expected = Bytes::from_static(b"getValue revert").encode();
multicall.clear_calls().add_call(get_value_reverting_call.clone(), true);
assert_eq!(multicall.call_raw().await.unwrap()[0].as_ref().unwrap_err()[4..], expected[..]);
assert_eq!(
multicall.call::<(String,)>().await.unwrap_err().as_revert().unwrap()[4..],
expected[..]
);
// v2 illegal revert
multicall
.clear_calls()
.add_call(get_value_reverting_call.clone(), false) // don't allow revert
.add_call(get_value_call.clone(), true); // true here will result in `tryAggregate(false, ...)`
assert!(matches!(
multicall.call::<(String, String)>().await.unwrap_err(),
MulticallError::IllegalRevert
));
// test version 3
// aggregate3 is the same as try_aggregate except with allowing failure on a per-call basis.
// no need to test that
multicall = multicall.version(MulticallVersion::Multicall3);
// .send with value
let amount = U256::from(100);
let value_tx = reverting_contract.method::<_, H256>("deposit", ()).unwrap().value(amount);
let rc_addr = reverting_contract.address();
let (bal_before,): (U256,) =
multicall.clear_calls().add_get_eth_balance(rc_addr, false).call().await.unwrap();
// send 2 value_tx
multicall.clear_calls().add_call(value_tx.clone(), false).add_call(value_tx.clone(), false);
multicall.send().await.unwrap();
let (bal_after,): (U256,) =
multicall.clear_calls().add_get_eth_balance(rc_addr, false).call().await.unwrap();
assert_eq!(bal_after, bal_before + U256::from(2) * amount);
// test specific revert cases
// empty revert
let empty_revert = reverting_contract.method::<_, H256>("emptyRevert", ()).unwrap();
multicall.clear_calls().add_call(empty_revert.clone(), true);
assert!(multicall.call::<(String,)>().await.unwrap_err().as_revert().unwrap().is_empty());
// string revert
let string_revert =
reverting_contract.method::<_, H256>("stringRevert", "String".to_string()).unwrap();
multicall.clear_calls().add_call(string_revert, true);
assert_eq!(
multicall.call::<(String,)>().await.unwrap_err().as_revert().unwrap()[4..],
Bytes::from_static(b"String").encode()[..]
);
// custom error revert
let custom_error = reverting_contract.method::<_, H256>("customError", ()).unwrap();
multicall.clear_calls().add_call(custom_error, true);
assert_eq!(
multicall.call::<(Bytes,)>().await.unwrap_err().as_revert().unwrap()[..],
keccak256("CustomError()")[..4]
);
// custom error with data revert
let custom_error_with_data =
reverting_contract.method::<_, H256>("customErrorWithData", "Data".to_string()).unwrap();
multicall.clear_calls().add_call(custom_error_with_data, true);
let err = multicall.call::<(Bytes,)>().await.unwrap_err();
let bytes = err.as_revert().unwrap();
assert_eq!(bytes[..4], keccak256("CustomErrorWithData(string)")[..4]);
assert_eq!(bytes[4..], encode(&[Token::String("Data".to_string())]));
}
#[tokio::test]
async fn test_derive_eip712() {
// Generate Contract ABI Bindings
abigen!(
DeriveEip712Test,
"./ethers-contract/tests/solidity-contracts/derive_eip712_abi.json",
event_derives(serde::Deserialize, serde::Serialize)
);
// Create derived structs
#[derive(Debug, Clone, Eip712, EthAbiType)]
#[eip712(
name = "Eip712Test",
version = "1",
chain_id = 1,
verifying_contract = "0x0000000000000000000000000000000000000001",
salt = "eip712-test-75F0CCte"
)]
struct FooBar {
foo: I256,
bar: U256,
fizz: Bytes,
buzz: [u8; 32],
far: String,
out: Address,
}
// get ABI and bytecode for the DeriveEip712Test contract
let (abi, bytecode) = compile_contract("DeriveEip712Test", "DeriveEip712Test.sol");
// launch the network & connect to it
let anvil = Anvil::new().spawn();
let from = anvil.addresses()[0];
let provider = Provider::try_from(anvil.endpoint())
.unwrap()
.with_sender(from)
.interval(std::time::Duration::from_millis(10));
let client = Arc::new(provider);
let wallet: LocalWallet = anvil.keys()[0].clone().into();
let factory = ContractFactory::new(abi.clone(), bytecode.clone(), client.clone());
let contract = factory
.deploy(())
.expect("failed to deploy DeriveEip712Test contract")
.legacy()
.send()
.await
.expect("failed to instantiate factory for DeriveEip712 contract");
let addr = contract.address();
let contract = DeriveEip712Test::new(addr, client.clone());
let foo_bar = FooBar {
foo: I256::from(10u64),
bar: U256::from(20u64),
fizz: b"fizz".into(),
buzz: keccak256("buzz"),
far: String::from("space"),
out: Address::from([0; 20]),
};
let derived_foo_bar = derive_eip_712_test::FooBar {
foo: foo_bar.foo,
bar: foo_bar.bar,
fizz: foo_bar.fizz.clone(),
buzz: foo_bar.buzz,
far: foo_bar.far.clone(),
out: foo_bar.out,
};
let sig = wallet.sign_typed_data(&foo_bar).await.expect("failed to sign typed data");
let r = <[u8; 32]>::try_from(sig.r)
.expect("failed to parse 'r' value from signature into [u8; 32]");
let s = <[u8; 32]>::try_from(sig.s)
.expect("failed to parse 's' value from signature into [u8; 32]");
let v = u8::try_from(sig.v).expect("failed to parse 'v' value from signature into u8");
let domain_separator = contract
.domain_separator()
.call()
.await
.expect("failed to retrieve domain_separator from contract");
let type_hash =
contract.type_hash().call().await.expect("failed to retrieve type_hash from contract");
let struct_hash = contract
.struct_hash(derived_foo_bar.clone())
.call()
.await
.expect("failed to retrieve struct_hash from contract");
let encoded = contract
.encode_eip_712(derived_foo_bar.clone())
.call()
.await
.expect("failed to retrieve eip712 encoded hash from contract");
let verify = contract
.verify_foo_bar(wallet.address(), derived_foo_bar, r, s, v)
.call()
.await
.expect("failed to verify signed typed data eip712 payload");
assert_eq!(
domain_separator,
foo_bar
.domain()
.expect("failed to return domain_separator from Eip712 implemented struct")
.separator(),
"domain separator does not match contract domain separator!"
);
assert_eq!(
type_hash,
FooBar::type_hash().expect("failed to return type_hash from Eip712 implemented struct"),
"type hash does not match contract struct type hash!"
);
assert_eq!(
struct_hash,
foo_bar
.clone()
.struct_hash()
.expect("failed to return struct_hash from Eip712 implemented struct"),
"struct hash does not match contract struct hash!"
);
assert_eq!(
encoded,
foo_bar
.encode_eip712()
.expect("failed to return domain_separator from Eip712 implemented struct"),
"Encoded value does not match!"
);
assert!(verify, "typed data signature failed!");
}