use super::common::*; use ethers_contract::{ abigen, ContractFactory, ContractInstance, EthAbiType, EthEvent, LogMeta, Multicall, MulticallError, MulticallVersion, }; use ethers_core::{ abi::{encode, AbiEncode, Token, Tokenizable}, types::{ transaction::eip712::Eip712, Address, BlockId, Bytes, Filter, ValueOrArray, H160, H256, I256, U256, }, utils::{keccak256, Anvil}, }; use ethers_derive_eip712::*; use ethers_providers::{Http, Middleware, MiddlewareError, Provider, StreamExt}; use ethers_signers::{LocalWallet, Signer}; use std::{convert::TryFrom, iter::FromIterator, sync::Arc, time::Duration}; #[derive(Debug)] pub struct NonClone { m: M, } #[derive(Debug)] pub struct MwErr(M::Error); impl MiddlewareError for MwErr where M: Middleware, { type Inner = M::Error; fn from_err(src: M::Error) -> Self { Self(src) } fn as_inner(&self) -> Option<&Self::Inner> { Some(&self.0) } } impl std::fmt::Display for MwErr { fn fmt(&self, _f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { Ok(()) } } impl std::error::Error for MwErr {} impl Middleware for NonClone { type Error = MwErr; type Provider = M::Provider; type Inner = M; fn inner(&self) -> &Self::Inner { &self.m } } // this is not a test. It is a compile check. :) // It exists to ensure that trait bounds on contract internal behave as // expected. It should not be run fn it_compiles() { let (abi, _bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // launch anvil let anvil = Anvil::new().spawn(); let client = Provider::::try_from(anvil.endpoint()) .unwrap() .interval(Duration::from_millis(10u64)); // Works (B == M, M: Clone) let c: ContractInstance<&Provider, Provider> = ContractInstance::new(H160::default(), abi.clone(), &client); let _ = c.method::<(), ()>("notARealMethod", ()); // Works (B == &M, M: Clone) let c: ContractInstance, Provider> = ContractInstance::new(H160::default(), abi.clone(), client.clone()); let _ = c.method::<(), ()>("notARealMethod", ()); let non_clone_mware = NonClone { m: client }; // Works (B == &M, M: !Clone) let c: ContractInstance<&NonClone>, NonClone>> = ContractInstance::new(H160::default(), abi, &non_clone_mware); let _ = c.method::<(), ()>("notARealMethod", ()); // // Fails (B == M, M: !Clone) // let c: ContractInternal>, NonClone>> = // ContractInternal::new(H160::default(), abi, non_clone_mware); // let _ = c.method::<(), ()>("notARealMethod", ()); } #[tokio::test] async fn deploy_and_call_contract() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // launch anvil let anvil = Anvil::new().spawn(); // Instantiate the clients. We assume that clients consume the provider and the wallet // (which makes sense), so for multi-client tests, you must clone the provider. let addrs = anvil.addresses().to_vec(); let addr2 = addrs[1]; let client = connect(&anvil, 0); let client2 = connect(&anvil, 1); // create a factory which will be used to deploy instances of the contract let factory = ContractFactory::new(abi, bytecode, client.clone()); // `send` consumes the deployer so it must be cloned for later re-use // (practically it's not expected that you'll need to deploy multiple instances of // the _same_ deployer, so it's fine to clone here from a dev UX vs perf tradeoff) let deployer = factory.deploy("initial value".to_string()).unwrap().legacy(); // dry runs the deployment of the contract. takes the deployer by reference, no need to // clone. deployer.call().await.unwrap(); let (contract, receipt) = deployer.clone().send_with_receipt().await.unwrap(); assert_eq!(receipt.contract_address.unwrap(), contract.address()); let get_value = contract.method::<_, String>("getValue", ()).unwrap(); let last_sender = contract.method::<_, Address>("lastSender", ()).unwrap(); // the initial value must be the one set in the constructor let value = get_value.clone().call().await.unwrap(); assert_eq!(value, "initial value"); // need to declare the method first, and only then send it // this is because it internally clones an Arc which would otherwise // get immediately dropped let contract_call = contract.connect(client2.clone()).method::<_, H256>("setValue", "hi".to_owned()).unwrap(); let calldata = contract_call.calldata().unwrap(); let _gas_estimate = contract_call.estimate_gas().await.unwrap(); let contract_call = contract_call.legacy(); let pending_tx = contract_call.send().await.unwrap(); let tx = client.get_transaction(*pending_tx).await.unwrap().unwrap(); let _tx_receipt = pending_tx.await.unwrap().unwrap(); assert_eq!(last_sender.clone().call().await.unwrap(), addr2); assert_eq!(get_value.clone().call().await.unwrap(), "hi"); assert_eq!(tx.input, calldata); // we can also call contract methods at other addresses with the `at` call // (useful when interacting with multiple ERC20s for example) let contract2_addr = deployer.send().await.unwrap().address(); let contract2 = contract.at(contract2_addr); let init_value: String = contract2.method::<_, String>("getValue", ()).unwrap().call().await.unwrap(); let init_address = contract2.method::<_, Address>("lastSender", ()).unwrap().call().await.unwrap(); assert_eq!(init_address, Address::zero()); assert_eq!(init_value, "initial value"); // methods with multiple args also work let _tx_hash = contract .method::<_, H256>("setValues", ("hi".to_owned(), "bye".to_owned())) .unwrap() .legacy() .send() .await .unwrap() .await .unwrap(); } #[tokio::test] #[cfg(feature = "abigen")] async fn get_past_events() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let anvil = Anvil::new().spawn(); let client = connect(&anvil, 0); let address = client.get_accounts().await.unwrap()[0]; let contract = deploy(client.clone(), abi, bytecode).await; // make a call with `client` let func = contract.method::<_, H256>("setValue", "hi".to_owned()).unwrap().legacy(); let tx = func.send().await.unwrap(); let _receipt = tx.await.unwrap(); // and we can fetch the events let logs: Vec = contract .event() .from_block(0u64) .topic1(address) // Corresponds to the first indexed parameter .query() .await .unwrap(); assert_eq!(logs[0].new_value, "initial value"); assert_eq!(logs[1].new_value, "hi"); assert_eq!(logs.len(), 2); // and we can fetch the events at a block hash let hash = client.get_block(1).await.unwrap().unwrap().hash.unwrap(); let logs: Vec = contract .event() .at_block_hash(hash) .topic1(address) // Corresponds to the first indexed parameter .query() .await .unwrap(); assert_eq!(logs[0].new_value, "initial value"); assert_eq!(logs.len(), 1); } #[tokio::test] #[cfg(feature = "abigen")] async fn get_events_with_meta() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let anvil = Anvil::new().spawn(); let client = connect(&anvil, 0); let address = anvil.addresses()[0]; let contract = deploy(client.clone(), abi, bytecode).await; // and we can fetch the events let logs: Vec<(ValueChanged, LogMeta)> = contract .event() .from_block(0u64) .topic1(address) // Corresponds to the first indexed parameter .query_with_meta() .await .unwrap(); assert_eq!(logs.len(), 1); let (log, meta) = &logs[0]; assert_eq!(log.new_value, "initial value"); assert_eq!(meta.address, contract.address()); assert_eq!(meta.log_index, 0.into()); assert_eq!(meta.block_number, 1.into()); let block = client.get_block(1).await.unwrap().unwrap(); assert_eq!(meta.block_hash, block.hash.unwrap()); assert_eq!(block.transactions.len(), 1); let tx = block.transactions[0]; assert_eq!(meta.transaction_hash, tx); assert_eq!(meta.transaction_index, 0.into()); } #[tokio::test] async fn call_past_state() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let anvil = Anvil::new().spawn(); let client = connect(&anvil, 0); let contract = deploy(client.clone(), abi, bytecode).await; let deployed_block = client.get_block_number().await.unwrap(); // assert initial state let value = contract.method::<_, String>("getValue", ()).unwrap().legacy().call().await.unwrap(); assert_eq!(value, "initial value"); // make a call with `client` let _tx_hash = *contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .legacy() .send() .await .unwrap(); // assert new value let value = contract.method::<_, String>("getValue", ()).unwrap().legacy().call().await.unwrap(); assert_eq!(value, "hi"); // assert previous value let value = contract .method::<_, String>("getValue", ()) .unwrap() .legacy() .block(BlockId::Number(deployed_block.into())) .call() .await .unwrap(); assert_eq!(value, "initial value"); // Here would be the place to test EIP-1898, specifying the `BlockId` of `call` as the // first block hash. However, Ganache does not implement this :/ // let hash = client.get_block(1).await.unwrap().unwrap().hash.unwrap(); // let value = contract // .method::<_, String>("getValue", ()) // .unwrap() // .block(BlockId::Hash(hash)) // .call() // .await // .unwrap(); // assert_eq!(value, "initial value"); } #[tokio::test] #[ignore] async fn call_past_hash_test() { // geth --dev --http --http.api eth,web3 let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let provider = Provider::::try_from("http://localhost:8545").unwrap(); let deployer = provider.get_accounts().await.unwrap()[0]; let client = Arc::new(provider.with_sender(deployer)); let contract = deploy(client.clone(), abi, bytecode).await; let deployed_block = client.get_block_number().await.unwrap(); // assert initial state let value = contract.method::<_, String>("getValue", ()).unwrap().call().await.unwrap(); assert_eq!(value, "initial value"); // make a call with `client` let _tx_hash = *contract.method::<_, H256>("setValue", "hi".to_owned()).unwrap().send().await.unwrap(); // assert new value let value = contract.method::<_, String>("getValue", ()).unwrap().call().await.unwrap(); assert_eq!(value, "hi"); // assert previous value using block hash let hash = client.get_block(deployed_block).await.unwrap().unwrap().hash.unwrap(); let value = contract .method::<_, String>("getValue", ()) .unwrap() .block(BlockId::Hash(hash)) .call() .await .unwrap(); assert_eq!(value, "initial value"); } #[tokio::test] #[cfg(feature = "abigen")] async fn watch_events() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let anvil = Anvil::new().spawn(); let client = connect(&anvil, 0); let contract = deploy(client.clone(), abi.clone(), bytecode).await; // We spawn the event listener: let event = contract.event::(); let mut stream = event.stream().await.unwrap(); // Also set up a subscription for the same thing let ws = Provider::connect(anvil.ws_endpoint()).await.unwrap(); let contract2 = ethers_contract::Contract::new(contract.address(), abi, ws.into()); let event2 = contract2.event::(); let mut subscription = event2.subscribe().await.unwrap(); let mut subscription_meta = event2.subscribe().await.unwrap().with_meta(); let num_calls = 3u64; // and we make a few calls let num = client.get_block_number().await.unwrap(); for i in 0..num_calls { let call = contract.method::<_, H256>("setValue", i.to_string()).unwrap().legacy(); let pending_tx = call.send().await.unwrap(); let _receipt = pending_tx.await.unwrap(); } for i in 0..num_calls { // unwrap the option of the stream, then unwrap the decoding result let log = stream.next().await.unwrap().unwrap(); let log2 = subscription.next().await.unwrap().unwrap(); let (log3, meta) = subscription_meta.next().await.unwrap().unwrap(); assert_eq!(log.new_value, log3.new_value); assert_eq!(log.new_value, log2.new_value); assert_eq!(log.new_value, i.to_string()); assert_eq!(meta.block_number, num + i + 1); let hash = client.get_block(num + i + 1).await.unwrap().unwrap().hash.unwrap(); assert_eq!(meta.block_hash, hash); } } #[tokio::test] async fn watch_subscription_events_multiple_addresses() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let anvil = Anvil::new().spawn(); let client = connect(&anvil, 0); let contract_1 = deploy(client.clone(), abi.clone(), bytecode.clone()).await; let contract_2 = deploy(client.clone(), abi.clone(), bytecode).await; let ws = Provider::connect(anvil.ws_endpoint()).await.unwrap(); let filter = Filter::new() .address(ValueOrArray::Array(vec![contract_1.address(), contract_2.address()])); let mut stream = ws.subscribe_logs(&filter).await.unwrap(); // and we make a few calls let call = contract_1.method::<_, H256>("setValue", "1".to_string()).unwrap().legacy(); let pending_tx = call.send().await.unwrap(); let _receipt = pending_tx.await.unwrap(); let call = contract_2.method::<_, H256>("setValue", "2".to_string()).unwrap().legacy(); let pending_tx = call.send().await.unwrap(); let _receipt = pending_tx.await.unwrap(); // unwrap the option of the stream, then unwrap the decoding result let log_1 = stream.next().await.unwrap(); let log_2 = stream.next().await.unwrap(); assert_eq!(log_1.address, contract_1.address()); assert_eq!(log_2.address, contract_2.address()); } #[tokio::test] async fn build_event_of_type() { abigen!( AggregatorInterface, r#"[ event AnswerUpdated(int256 indexed current, uint256 indexed roundId, uint256 updatedAt) ]"#, ); let anvil = Anvil::new().spawn(); let client = connect(&anvil, 0); let event = ethers_contract::Contract::event_of_type::(client); assert_eq!(event.filter, Filter::new().event(&AnswerUpdatedFilter::abi_signature())); } #[tokio::test] async fn signer_on_node() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // spawn anvil let anvil = Anvil::new().spawn(); // connect let provider = Provider::::try_from(anvil.endpoint()) .unwrap() .interval(std::time::Duration::from_millis(50u64)); // get the first account let deployer = provider.get_accounts().await.unwrap()[0]; let client = Arc::new(provider.with_sender(deployer)); let contract = deploy(client, abi, bytecode).await; // make a call without the signer let _receipt = contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .legacy() .send() .await .unwrap() .await .unwrap(); let value: String = contract.method::<_, String>("getValue", ()).unwrap().call().await.unwrap(); assert_eq!(value, "hi"); } #[tokio::test] async fn multicall_aggregate() { // get ABI and bytecode for the Multicall contract let (multicall_abi, multicall_bytecode) = compile_contract("Multicall3", "Multicall.sol"); // get ABI and bytecode for the NotSoSimpleStorage contract let (not_so_simple_abi, not_so_simple_bytecode) = compile_contract("NotSoSimpleStorage", "NotSoSimpleStorage.sol"); // get ABI and bytecode for the SimpleStorage contract let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // launch anvil let anvil = Anvil::new().spawn(); // Instantiate the clients. We assume that clients consume the provider and the wallet // (which makes sense), so for multi-client tests, you must clone the provider. // `client` is used to deploy the Multicall contract // `client2` is used to deploy the first SimpleStorage contract // `client3` is used to deploy the second SimpleStorage contract // `client4` is used to make the aggregate call let addrs = anvil.addresses().to_vec(); let addr2 = addrs[1]; let addr3 = addrs[2]; let client = connect(&anvil, 0); let client2 = connect(&anvil, 1); let client3 = connect(&anvil, 2); let client4 = connect(&anvil, 3); // create a factory which will be used to deploy instances of the contract let multicall_factory = ContractFactory::new(multicall_abi, multicall_bytecode, client.clone()); let simple_factory = ContractFactory::new(abi.clone(), bytecode.clone(), client2.clone()); let not_so_simple_factory = ContractFactory::new(not_so_simple_abi, not_so_simple_bytecode, client3.clone()); let multicall_contract = multicall_factory.deploy(()).unwrap().legacy().send().await.unwrap(); let addr = multicall_contract.address(); let simple_contract = simple_factory.deploy("the first one".to_string()).unwrap().legacy().send().await.unwrap(); let not_so_simple_contract = not_so_simple_factory .deploy("the second one".to_string()) .unwrap() .legacy() .send() .await .unwrap(); // Client2 and Client3 broadcast txs to set the values for both contracts simple_contract .connect(client2.clone()) .method::<_, H256>("setValue", "reset first".to_owned()) .unwrap() .legacy() .send() .await .unwrap(); not_so_simple_contract .connect(client3.clone()) .method::<_, H256>("setValue", "reset second".to_owned()) .unwrap() .legacy() .send() .await .unwrap(); // get the calls for `value` and `last_sender` for both SimpleStorage contracts let value = simple_contract.method::<_, String>("getValue", ()).unwrap(); let value2 = not_so_simple_contract.method::<_, (String, Address)>("getValues", ()).unwrap(); let last_sender = simple_contract.method::<_, Address>("lastSender", ()).unwrap(); let last_sender2 = not_so_simple_contract.method::<_, Address>("lastSender", ()).unwrap(); // initiate the Multicall instance and add calls one by one in builder style let mut multicall = Multicall::new(client4.clone(), Some(addr)).await.unwrap(); // Set version to 1 multicall = multicall.version(MulticallVersion::Multicall); multicall .add_call(value, false) .add_call(value2, false) .add_call(last_sender, false) .add_call(last_sender2, false); let return_data: (String, (String, Address), Address, Address) = multicall.call().await.unwrap(); assert_eq!(return_data.0, "reset first"); assert_eq!((return_data.1).0, "reset second"); assert_eq!((return_data.1).1, addr3); assert_eq!(return_data.2, addr2); assert_eq!(return_data.3, addr3); // construct broadcast transactions that will be batched and broadcast via Multicall let broadcast = simple_contract .connect(client4.clone()) .method::<_, H256>("setValue", "first reset again".to_owned()) .unwrap(); let broadcast2 = not_so_simple_contract .connect(client4.clone()) .method::<_, H256>("setValue", "second reset again".to_owned()) .unwrap(); // use the already initialised Multicall instance, clearing the previous calls and adding // new calls. Previously we used the `.call()` functionality to do a batch of calls in one // go. Now we will use the `.send()` functionality to broadcast a batch of transactions // in one go let mut multicall_send = multicall.clone(); multicall_send.clear_calls().add_call(broadcast, false).add_call(broadcast2, false); // broadcast the transaction and wait for it to be mined let _tx_receipt = multicall_send.legacy().send().await.unwrap().await.unwrap(); // Do another multicall to check the updated return values // The `getValue` calls should return the last value we set in the batched broadcast // The `lastSender` calls should return the address of the Multicall contract, as it is // the one acting as proxy and calling our SimpleStorage contracts (msg.sender) let return_data: (String, (String, Address), Address, Address) = multicall.call().await.unwrap(); assert_eq!(return_data.0, "first reset again"); assert_eq!((return_data.1).0, "second reset again"); assert_eq!((return_data.1).1, multicall_contract.address()); assert_eq!(return_data.2, multicall_contract.address()); assert_eq!(return_data.3, multicall_contract.address()); let addrs = anvil.addresses(); // query ETH balances of multiple addresses // these keys haven't been used to do any tx // so should have 100 ETH multicall .clear_calls() .add_get_eth_balance(addrs[4], false) .add_get_eth_balance(addrs[5], false) .add_get_eth_balance(addrs[6], false); let valid_balances = [ U256::from(10_000_000_000_000_000_000_000u128), U256::from(10_000_000_000_000_000_000_000u128), U256::from(10_000_000_000_000_000_000_000u128), ]; let balances: (U256, U256, U256) = multicall.call().await.unwrap(); assert_eq!(balances.0, valid_balances[0]); assert_eq!(balances.1, valid_balances[1]); assert_eq!(balances.2, valid_balances[2]); // call_array multicall .clear_calls() .add_get_eth_balance(addrs[4], false) .add_get_eth_balance(addrs[5], false) .add_get_eth_balance(addrs[6], false); let balances: Vec = multicall.call_array().await.unwrap(); assert_eq!(balances, Vec::from_iter(valid_balances.iter().copied())); // clear multicall so we can test `call_raw` w/ >16 calls multicall.clear_calls(); // clear the current value simple_contract .connect(client2.clone()) .method::<_, H256>("setValue", "many".to_owned()) .unwrap() .legacy() .send() .await .unwrap(); multicall.add_calls( false, std::iter::repeat(simple_contract.method::<_, String>("getValue", ()).unwrap()).take(17), ); let tokens = multicall.call_raw().await.unwrap(); let results: Vec = tokens .into_iter() .map(|result| { // decode manually using Tokenizable method String::from_token(result.unwrap()).unwrap() }) .collect(); assert_eq!(results, ["many"; 17]); // test version 2 multicall = multicall.version(MulticallVersion::Multicall2); // deploy contract with reverting methods let reverting_contract = { let (abi, bytecode) = compile_contract("SimpleRevertingStorage", "SimpleRevertingStorage.sol"); let f = ContractFactory::new(abi, bytecode, client.clone()); f.deploy("This contract can revert".to_string()).unwrap().send().await.unwrap() }; // reset value reverting_contract .connect(client2.clone()) .method::<_, H256>("setValue", ("reset third".to_owned(), false)) .unwrap() .send() .await .unwrap(); // create calls let set_value_call = reverting_contract .connect(client.clone()) .method::<_, H256>("setValue", ("this didn't revert".to_owned(), false)) .unwrap(); let set_value_reverting_call = reverting_contract .connect(client3.clone()) .method::<_, H256>("setValue", ("this reverted".to_owned(), true)) .unwrap(); let get_value_call = reverting_contract.connect(client2.clone()).method::<_, String>("getValue", false).unwrap(); let get_value_reverting_call = reverting_contract.connect(client.clone()).method::<_, String>("getValue", true).unwrap(); // .send reverts // don't allow revert multicall .clear_calls() .add_call(set_value_reverting_call.clone(), false) .add_call(set_value_call.clone(), false); multicall.send().await.unwrap_err(); // value has not changed assert_eq!(get_value_call.clone().call().await.unwrap(), "reset third"); // allow revert multicall .clear_calls() .add_call(set_value_reverting_call.clone(), true) .add_call(set_value_call.clone(), false); multicall.send().await.unwrap(); // value has changed assert_eq!(get_value_call.clone().call().await.unwrap(), "this didn't revert"); // reset value again reverting_contract .connect(client2.clone()) .method::<_, H256>("setValue", ("reset third again".to_owned(), false)) .unwrap() .send() .await .unwrap(); // .call reverts // don't allow revert multicall .clear_calls() .add_call(get_value_reverting_call.clone(), false) .add_call(get_value_call.clone(), false); let res = multicall.call::<(String, String)>().await; let err = res.unwrap_err(); assert!(err.is_revert()); let message = err.decode_revert::().unwrap(); assert!(message.contains("Multicall3: call failed")); // allow revert -> call doesn't revert, but returns Err(_) in raw tokens let expected = Bytes::from_static(b"getValue revert").encode(); multicall.clear_calls().add_call(get_value_reverting_call.clone(), true); assert_eq!(multicall.call_raw().await.unwrap()[0].as_ref().unwrap_err()[4..], expected[..]); assert_eq!( multicall.call::<(String,)>().await.unwrap_err().as_revert().unwrap()[4..], expected[..] ); // v2 illegal revert multicall .clear_calls() .add_call(get_value_reverting_call.clone(), false) // don't allow revert .add_call(get_value_call.clone(), true); // true here will result in `tryAggregate(false, ...)` assert!(matches!( multicall.call::<(String, String)>().await.unwrap_err(), MulticallError::IllegalRevert )); // test version 3 // aggregate3 is the same as try_aggregate except with allowing failure on a per-call basis. // no need to test that multicall = multicall.version(MulticallVersion::Multicall3); // .send with value let amount = U256::from(100); let value_tx = reverting_contract.method::<_, H256>("deposit", ()).unwrap().value(amount); let rc_addr = reverting_contract.address(); let (bal_before,): (U256,) = multicall.clear_calls().add_get_eth_balance(rc_addr, false).call().await.unwrap(); // send 2 value_tx multicall.clear_calls().add_call(value_tx.clone(), false).add_call(value_tx.clone(), false); multicall.send().await.unwrap(); let (bal_after,): (U256,) = multicall.clear_calls().add_get_eth_balance(rc_addr, false).call().await.unwrap(); assert_eq!(bal_after, bal_before + U256::from(2) * amount); // test specific revert cases // empty revert let empty_revert = reverting_contract.method::<_, H256>("emptyRevert", ()).unwrap(); multicall.clear_calls().add_call(empty_revert.clone(), true); assert!(multicall.call::<(String,)>().await.unwrap_err().as_revert().unwrap().is_empty()); // string revert let string_revert = reverting_contract.method::<_, H256>("stringRevert", "String".to_string()).unwrap(); multicall.clear_calls().add_call(string_revert, true); assert_eq!( multicall.call::<(String,)>().await.unwrap_err().as_revert().unwrap()[4..], Bytes::from_static(b"String").encode()[..] ); // custom error revert let custom_error = reverting_contract.method::<_, H256>("customError", ()).unwrap(); multicall.clear_calls().add_call(custom_error, true); assert_eq!( multicall.call::<(Bytes,)>().await.unwrap_err().as_revert().unwrap()[..], keccak256("CustomError()")[..4] ); // custom error with data revert let custom_error_with_data = reverting_contract.method::<_, H256>("customErrorWithData", "Data".to_string()).unwrap(); multicall.clear_calls().add_call(custom_error_with_data, true); let err = multicall.call::<(Bytes,)>().await.unwrap_err(); let bytes = err.as_revert().unwrap(); assert_eq!(bytes[..4], keccak256("CustomErrorWithData(string)")[..4]); assert_eq!(bytes[4..], encode(&[Token::String("Data".to_string())])); } #[tokio::test] async fn test_derive_eip712() { // Generate Contract ABI Bindings abigen!( DeriveEip712Test, "./ethers-contract/tests/solidity-contracts/derive_eip712_abi.json", event_derives(serde::Deserialize, serde::Serialize) ); // Create derived structs #[derive(Debug, Clone, Eip712, EthAbiType)] #[eip712( name = "Eip712Test", version = "1", chain_id = 1, verifying_contract = "0x0000000000000000000000000000000000000001", salt = "eip712-test-75F0CCte" )] struct FooBar { foo: I256, bar: U256, fizz: Bytes, buzz: [u8; 32], far: String, out: Address, } // get ABI and bytecode for the DeriveEip712Test contract let (abi, bytecode) = compile_contract("DeriveEip712Test", "DeriveEip712Test.sol"); // launch the network & connect to it let anvil = Anvil::new().spawn(); let from = anvil.addresses()[0]; let provider = Provider::try_from(anvil.endpoint()) .unwrap() .with_sender(from) .interval(std::time::Duration::from_millis(10)); let client = Arc::new(provider); let wallet: LocalWallet = anvil.keys()[0].clone().into(); let factory = ContractFactory::new(abi.clone(), bytecode.clone(), client.clone()); let contract = factory .deploy(()) .expect("failed to deploy DeriveEip712Test contract") .legacy() .send() .await .expect("failed to instantiate factory for DeriveEip712 contract"); let addr = contract.address(); let contract = DeriveEip712Test::new(addr, client.clone()); let foo_bar = FooBar { foo: I256::from(10u64), bar: U256::from(20u64), fizz: b"fizz".into(), buzz: keccak256("buzz"), far: String::from("space"), out: Address::from([0; 20]), }; let derived_foo_bar = derive_eip_712_test::FooBar { foo: foo_bar.foo, bar: foo_bar.bar, fizz: foo_bar.fizz.clone(), buzz: foo_bar.buzz, far: foo_bar.far.clone(), out: foo_bar.out, }; let sig = wallet.sign_typed_data(&foo_bar).await.expect("failed to sign typed data"); let r = <[u8; 32]>::try_from(sig.r) .expect("failed to parse 'r' value from signature into [u8; 32]"); let s = <[u8; 32]>::try_from(sig.s) .expect("failed to parse 's' value from signature into [u8; 32]"); let v = u8::try_from(sig.v).expect("failed to parse 'v' value from signature into u8"); let domain_separator = contract .domain_separator() .call() .await .expect("failed to retrieve domain_separator from contract"); let type_hash = contract.type_hash().call().await.expect("failed to retrieve type_hash from contract"); let struct_hash = contract .struct_hash(derived_foo_bar.clone()) .call() .await .expect("failed to retrieve struct_hash from contract"); let encoded = contract .encode_eip_712(derived_foo_bar.clone()) .call() .await .expect("failed to retrieve eip712 encoded hash from contract"); let verify = contract .verify_foo_bar(wallet.address(), derived_foo_bar, r, s, v) .call() .await .expect("failed to verify signed typed data eip712 payload"); assert_eq!( domain_separator, foo_bar .domain() .expect("failed to return domain_separator from Eip712 implemented struct") .separator(), "domain separator does not match contract domain separator!" ); assert_eq!( type_hash, FooBar::type_hash().expect("failed to return type_hash from Eip712 implemented struct"), "type hash does not match contract struct type hash!" ); assert_eq!( struct_hash, foo_bar .clone() .struct_hash() .expect("failed to return struct_hash from Eip712 implemented struct"), "struct hash does not match contract struct hash!" ); assert_eq!( encoded, foo_bar .encode_eip712() .expect("failed to return domain_separator from Eip712 implemented struct"), "Encoded value does not match!" ); assert!(verify, "typed data signature failed!"); }