bigint-mod-arith/docs/API.md

5.0 KiB

bigint-mod-arith - v3.0.2

Some common functions for modular arithmetic using native JS implementation of BigInt

Table of contents

Interfaces

Functions

Functions

abs

abs(a): number | bigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

Parameters

Name Type
a number | bigint

Returns

number | bigint

The absolute value of a

Defined in

abs.ts:8


bitLength

bitLength(a): number

Returns the bitlength of a number

Parameters

Name Type
a number | bigint

Returns

number

The bit length

Defined in

bitLength.ts:7


eGcd

eGcd(a, b): Egcd

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

throws {RangeError} This excepction is thrown if a or b are less than 0

Parameters

Name Type
a number | bigint
b number | bigint

Returns

Egcd

A triple (g, x, y), such that ax + by = g = gcd(a, b).

Defined in

egcd.ts:18


gcd

gcd(a, b): bigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

Parameters

Name Type
a number | bigint
b number | bigint

Returns

bigint

The greatest common divisor of a and b

Defined in

gcd.ts:10


lcm

lcm(a, b): bigint

The least common multiple computed as abs(a*b)/gcd(a,b)

Parameters

Name Type
a number | bigint
b number | bigint

Returns

bigint

The least common multiple of a and b

Defined in

lcm.ts:10


max

max(a, b): number | bigint

Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b

Parameters

Name Type
a number | bigint
b number | bigint

Returns

number | bigint

Maximum of numbers a and b

Defined in

max.ts:9


min

min(a, b): number | bigint

Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b

Parameters

Name Type
a number | bigint
b number | bigint

Returns

number | bigint

Minimum of numbers a and b

Defined in

min.ts:9


modInv

modInv(a, n): bigint

Modular inverse.

throws {RangeError} Excpeption thorwn when a does not have inverse modulo n

Parameters

Name Type Description
a number | bigint The number to find an inverse for
n number | bigint The modulo

Returns

bigint

The inverse modulo n

Defined in

modInv.ts:14


modPow

modPow(b, e, n): bigint

Modular exponentiation b**e mod n. Currently using the right-to-left binary method

throws {RangeError} Excpeption thrown when n is not > 0

Parameters

Name Type Description
b number | bigint base
e number | bigint exponent
n number | bigint modulo

Returns

bigint

b**e mod n

Defined in

modPow.ts:16


toZn

toZn(a, n): bigint

Finds the smallest positive element that is congruent to a in modulo n

remarks a and b must be the same type, either number or bigint

throws {RangeError} Excpeption thrown when n is not > 0

Parameters

Name Type Description
a number | bigint An integer
n number | bigint The modulo

Returns

bigint

A bigint with the smallest positive representation of a modulo n

Defined in

toZn.ts:15