6.5 KiB
bigint-mod-arith
Some extra functions to work with modular arithmetics using native JS (stage 3) implementation of BigInt. It can be used with Node.js (>=10.4.0) and Web Browsers supporting BigInt.
If you are looking for a cryptographically secure random generator and for probale primes (generation and testing), you may be interested in bigint-secrets
The operations supported on BigInts are not constant time. BigInt can be therefore unsuitable for use in cryptography
Many platforms provide native support for cryptography, such as webcrypto or node crypto.
Installation
bigint-mod-arith is distributed as both an ES6 and a CJS module.
The ES6 module is built for any web browser supporting BigInt. The module only uses native javascript implementations and no polyfills had been applied.
The CJS module is built as a standard node module.
bigint-mod-arith can be imported to your project with npm
:
npm install bigint-mod-arith
For web browsers, you can also download the bundle from GitHub or just hotlink to it:
<script type="module" src="https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/dist/bigint-mod-arith-latest.browser.mod.min.js"></script>
Usage examples
const bigintModArith = require('bigint-mod-arith');
// Stage 3 BigInts with value 666 can be declared as BigInt('666')
// or the shorter no-linter-friendly new syntax 666n
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
console.log(bigintModArith.modPow(a, b, n)); // prints 6
console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3
console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2
bigint-mod-arith JS Doc
Functions
- abs(a) ⇒
bigint
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
- gcd(a, b) ⇒
bigint
Greatest-common divisor of two integers based on the iterative binary algorithm.
- lcm(a, b) ⇒
bigint
The least common multiple computed as abs(a*b)/gcd(a,b)
- toZn(a, n) ⇒
bigint
Finds the smallest positive element that is congruent to a in modulo n
- eGcd(a, b) ⇒
egcdReturn
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
- modInv(a, n) ⇒
bigint
Modular inverse.
- modPow(a, b, n) ⇒
bigint
Modular exponentiation a**b mod n
Typedefs
- egcdReturn :
Object
A triple (g, x, y), such that ax + by = g = gcd(a, b).
abs(a) ⇒ bigint
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
Kind: global function
Returns: bigint
- the absolute value of a
Param | Type |
---|---|
a | number | bigint |
gcd(a, b) ⇒ bigint
Greatest-common divisor of two integers based on the iterative binary algorithm.
Kind: global function
Returns: bigint
- The greatest common divisor of a and b
Param | Type |
---|---|
a | number | bigint |
b | number | bigint |
lcm(a, b) ⇒ bigint
The least common multiple computed as abs(a*b)/gcd(a,b)
Kind: global function
Returns: bigint
- The least common multiple of a and b
Param | Type |
---|---|
a | number | bigint |
b | number | bigint |
toZn(a, n) ⇒ bigint
Finds the smallest positive element that is congruent to a in modulo n
Kind: global function
Returns: bigint
- The smallest positive representation of a in modulo n
Param | Type | Description |
---|---|---|
a | number | bigint |
An integer |
n | number | bigint |
The modulo |
eGcd(a, b) ⇒ egcdReturn
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
Kind: global function
Param | Type |
---|---|
a | number | bigint |
b | number | bigint |
modInv(a, n) ⇒ bigint
Modular inverse.
Kind: global function
Returns: bigint
- the inverse modulo n
Param | Type | Description |
---|---|---|
a | number | bigint |
The number to find an inverse for |
n | number | bigint |
The modulo |
modPow(a, b, n) ⇒ bigint
Modular exponentiation a**b mod n
Kind: global function
Returns: bigint
- a**b mod n
Param | Type | Description |
---|---|---|
a | number | bigint |
base |
b | number | bigint |
exponent |
n | number | bigint |
modulo |
egcdReturn : Object
A triple (g, x, y), such that ax + by = g = gcd(a, b).
Kind: global typedef
Properties
Name | Type |
---|---|
g | bigint |
x | bigint |
y | bigint |