bigint-mod-arith/dist/cjs/index.node.cjs

252 lines
12 KiB
JavaScript
Raw Normal View History

'use strict';
Object.defineProperty(exports, '__esModule', { value: true });
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param a
*
* @returns The absolute value of a
*/
function abs(a) {
return (a >= 0) ? a : -a;
}
/**
2022-10-03 15:35:35 +00:00
* Returns the (minimum) length of a number expressed in bits.
*
* @param a
* @returns The bit length
*/
function bitLength(a) {
2021-03-24 14:11:07 +00:00
if (typeof a === 'number')
a = BigInt(a);
if (a === 1n) {
return 1;
}
let bits = 1;
do {
bits++;
} while ((a >>= 1n) > 1n);
return bits;
}
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param a
* @param b
*
2022-09-12 08:59:51 +00:00
* @throws {@link RangeError} if a or b are <= 0
2021-03-24 17:30:45 +00:00
*
* @returns A triple (g, x, y), such that ax + by = g = gcd(a, b).
*/
function eGcd(a, b) {
2021-03-24 14:11:07 +00:00
if (typeof a === 'number')
a = BigInt(a);
if (typeof b === 'number')
b = BigInt(b);
if (a <= 0n || b <= 0n)
throw new RangeError('a and b MUST be > 0'); // a and b MUST be positive
let x = 0n;
let y = 1n;
let u = 1n;
let v = 0n;
2021-03-24 14:11:07 +00:00
while (a !== 0n) {
const q = b / a;
const r = b % a;
const m = x - (u * q);
const n = y - (v * q);
2021-03-24 14:11:07 +00:00
b = a;
a = r;
x = u;
y = v;
u = m;
v = n;
}
return {
2021-03-24 14:11:07 +00:00
g: b,
x: x,
y: y
};
}
/**
2022-09-12 08:59:51 +00:00
* Greatest common divisor of two integers based on the iterative binary algorithm.
*
* @param a
* @param b
*
* @returns The greatest common divisor of a and b
*/
function gcd(a, b) {
2021-03-24 14:11:07 +00:00
let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a);
let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b);
if (aAbs === 0n) {
return bAbs;
}
else if (bAbs === 0n) {
return aAbs;
}
let shift = 0n;
while (((aAbs | bAbs) & 1n) === 0n) {
aAbs >>= 1n;
bAbs >>= 1n;
shift++;
}
while ((aAbs & 1n) === 0n)
aAbs >>= 1n;
do {
while ((bAbs & 1n) === 0n)
bAbs >>= 1n;
if (aAbs > bAbs) {
const x = aAbs;
aAbs = bAbs;
bAbs = x;
}
bAbs -= aAbs;
} while (bAbs !== 0n);
// rescale
return aAbs << shift;
}
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param a
* @param b
*
* @returns The least common multiple of a and b
*/
function lcm(a, b) {
2021-03-24 14:11:07 +00:00
if (typeof a === 'number')
a = BigInt(a);
if (typeof b === 'number')
b = BigInt(b);
if (a === 0n && b === 0n)
return BigInt(0);
// return abs(a * b) as bigint / gcd(a, b)
return abs((a / gcd(a, b)) * b);
}
/**
2022-09-12 08:59:51 +00:00
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<b
*
* @param a
* @param b
*
* @returns Maximum of numbers a and b
*/
function max(a, b) {
return (a >= b) ? a : b;
}
/**
2022-09-12 08:59:51 +00:00
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<b
*
* @param a
* @param b
*
* @returns Minimum of numbers a and b
*/
function min(a, b) {
return (a >= b) ? b : a;
}
/**
* Finds the smallest positive element that is congruent to a in modulo n
2021-03-24 14:11:07 +00:00
*
* @remarks
* a and b must be the same type, either number or bigint
*
2021-03-24 17:30:45 +00:00
* @param a - An integer
* @param n - The modulo
*
2022-09-12 08:59:51 +00:00
* @throws {@link RangeError} if n <= 0
*
2021-03-24 17:30:45 +00:00
* @returns A bigint with the smallest positive representation of a modulo n
*/
function toZn(a, n) {
2021-03-24 14:11:07 +00:00
if (typeof a === 'number')
a = BigInt(a);
if (typeof n === 'number')
n = BigInt(n);
if (n <= 0n) {
2021-03-24 17:30:45 +00:00
throw new RangeError('n must be > 0');
}
2021-03-24 14:11:07 +00:00
const aZn = a % n;
return (aZn < 0n) ? aZn + n : aZn;
}
/**
* Modular inverse.
*
* @param a The number to find an inverse for
* @param n The modulo
*
2022-09-12 08:59:51 +00:00
* @throws {@link RangeError} if a does not have inverse modulo n
2021-03-24 17:30:45 +00:00
*
* @returns The inverse modulo n
*/
function modInv(a, n) {
2021-03-24 17:30:45 +00:00
const egcd = eGcd(toZn(a, n), n);
if (egcd.g !== 1n) {
throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`); // modular inverse does not exist
}
2021-03-24 17:30:45 +00:00
else {
return toZn(egcd.x, n);
}
}
/**
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
*
* @param b base
* @param e exponent
* @param n modulo
*
2022-09-12 08:59:51 +00:00
* @throws {@link RangeError} if n <= 0
2021-03-24 17:30:45 +00:00
*
* @returns b**e mod n
*/
function modPow(b, e, n) {
2021-03-24 14:11:07 +00:00
if (typeof b === 'number')
b = BigInt(b);
if (typeof e === 'number')
e = BigInt(e);
if (typeof n === 'number')
n = BigInt(n);
if (n <= 0n) {
2021-03-24 17:30:45 +00:00
throw new RangeError('n must be > 0');
}
2021-03-24 14:11:07 +00:00
else if (n === 1n) {
2021-03-24 17:30:45 +00:00
return 0n;
}
2021-03-24 14:11:07 +00:00
b = toZn(b, n);
if (e < 0n) {
2021-03-24 14:11:07 +00:00
return modInv(modPow(b, abs(e), n), n);
}
let r = 1n;
while (e > 0) {
if ((e % 2n) === 1n) {
2021-03-24 14:11:07 +00:00
r = r * b % n;
}
e = e / 2n;
2021-03-24 14:11:07 +00:00
b = b ** 2n % n;
}
return r;
}
exports.abs = abs;
exports.bitLength = bitLength;
exports.eGcd = eGcd;
exports.gcd = gcd;
exports.lcm = lcm;
exports.max = max;
exports.min = min;
exports.modInv = modInv;
exports.modPow = modPow;
exports.toZn = toZn;
2022-09-12 08:59:51 +00:00
//# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXgubm9kZS5janMiLCJzb3VyY2VzIjpbIi4uLy4uL3NyYy90cy9hYnMudHMiLCIuLi8uLi9zcmMvdHMvYml0TGVuZ3RoLnRzIiwiLi4vLi4vc3JjL3RzL2VnY2QudHMiLCIuLi8uLi9zcmMvdHMvZ2NkLnRzIiwiLi4vLi4vc3JjL3RzL2xjbS50cyIsIi4uLy4uL3NyYy90cy9tYXgudHMiLCIuLi8uLi9zcmMvdHMvbWluLnRzIiwiLi4vLi4vc3JjL3RzL3RvWm4udHMiLCIuLi8uLi9zcmMvdHMvbW9kSW52LnRzIiwiLi4vLi4vc3JjL3RzL21vZFBvdy50cyJdLCJzb3VyY2VzQ29udGVudCI6bnVsbCwibmFtZXMiOltdLCJtYXBwaW5ncyI6Ijs7OztBQUFBOzs7Ozs7QUFNRztBQUNHLFNBQVUsR0FBRyxDQUFFLENBQWdCLEVBQUE7QUFDbkMsSUFBQSxPQUFPLENBQUMsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUE7QUFDMUI7O0FDVEE7Ozs7O0FBS0c7QUFDRyxTQUFVLFNBQVMsQ0FBRSxDQUFnQixFQUFBO0lBQ3pDLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUFFLFFBQUEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUV4QyxJQUFJLENBQUMsS0FBSyxFQUFFLEVBQUU7QUFBRSxRQUFBLE9BQU8sQ0FBQyxDQUFBO0FBQUUsS0FBQTtJQUMxQixJQUFJLElBQUksR0FBRyxDQUFDLENBQUE7SUFDWixHQUFHO0FBQ0QsUUFBQSxJQUFJLEVBQUUsQ0FBQTtBQUNQLEtBQUEsUUFBUSxDQUFDLENBQUMsS0FBSyxFQUFFLElBQUksRUFBRSxFQUFDO0FBQ3pCLElBQUEsT0FBTyxJQUFJLENBQUE7QUFDYjs7QUNWQTs7Ozs7Ozs7OztBQVVHO0FBQ2EsU0FBQSxJQUFJLENBQUUsQ0FBZ0IsRUFBRSxDQUFnQixFQUFBO0lBQ3RELElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUFFLFFBQUEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUN4QyxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFBRSxRQUFBLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7QUFFeEMsSUFBQSxJQUFJLENBQUMsSUFBSSxFQUFFLElBQUksQ0FBQyxJQUFJLEVBQUU7QUFBRSxRQUFBLE1BQU0sSUFBSSxVQUFVLENBQUMscUJBQXFCLENBQUMsQ0FBQTtJQUVuRSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFDVixJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFDVixJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFDVixJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFFVixPQUFPLENBQUMsS0FBSyxFQUFFLEVBQUU7QUFDZixRQUFBLE1BQU0sQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUE7QUFDZixRQUFBLE1BQU0sQ0FBQyxHQUFXLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDdkIsTUFBTSxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQTtRQUNyQixNQUFNLENBQUMsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFBO1FBQ3JCLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDTCxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ0wsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUNMLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDTCxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ0wsQ0FBQyxHQUFHLENBQUMsQ0FBQTtBQUNOLEtBQUE7SUFDRCxPQUFPO0FBQ0wsUUFBQSxDQUFDLEVBQUUsQ0FBQztBQUNKLFFBQUEsQ0FBQyxFQUFFLENBQUM7QUFDSixRQUFBLENBQUMsRUFBRSxDQUFDO0tBQ0wsQ0FBQTtBQUNIOztBQzNDQTs7Ozs7OztBQU9HO0FBQ2EsU0FBQSxHQUFHLENBQUUsQ0FBZ0IsRUFBRSxDQUFnQixFQUFBO0lBQ3JELElBQUksSUFBSSxHQUFHLENBQUMsT0FBTyxDQUFDLEtBQUssUUFBUSxJQUFJLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUMsQ0FBQyxDQUFXLENBQUE7SUFDdEUsSUFBSSxJQUFJLEdBQUcsQ0FBQyxPQUFPLENBQUMsS0FBSyxRQUFRLElBQUksTUFBTSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEdBQUcsQ0FBQyxDQUFDLENBQVcsQ0FBQTtJQUV0RSxJQUFJLElBQUksS0FBSyxFQUFFLEVBQUU7QUFDZixRQUFBLE9BQU8sSUFBSSxDQUFBO0FBQ1osS0FBQTtTQUFNLElBQUksSUFBSSxLQUFLLEVBQUUsRUFBRTtBQUN0QixRQUFBLE9BQU8sSUFBSSxDQUFBO0FBQ1osS0FBQTtJQUVELElBQUksS0FBSyxHQUFHLEVBQUUsQ0FBQTtJQUNkLE9BQU8sQ0FBQyxDQUFDLElBQUksR0FBRyxJQUFJLElBQUksRUFBRSxNQUFNLEVBQUUsRUFBRTtRQUNsQyxJQUFJLEtBQUssRUFBRSxDQUFBO1FBQ1gsSUFBSSxLQUFLLEVBQUUsQ0FBQTtBQUNYLFFBQUEsS0FBSyxFQUFFLENBQUE7QUFDUixLQUFBO0FBQ0QsSUFBQSxPQUFPLENBQUMsSUFBSSxHQUFHLEVBQUUsTUFBTSxFQUFFO1FBQUUsSUFBSSxLQUFLLEVBQUUsQ0FBQTtJQUN0QyxHQUFHO0FBQ0QsUUFBQSxPQUFPLENBQUMsSUFBSSxHQUFHLEVBQUUsTUFBTSxFQUFFO1lBQUUsSUFBSSxLQUFLLEVBQUUsQ0FBQTtRQUN0QyxJQUFJLElBQUksR0FBRyxJQUFJLEVBQUU7WUFDZixNQUFNLENBQUMsR0FBRyxJQUFJLENBQUE7WUFDZCxJQUFJLEdBQUcsSUFBSSxDQUFBO1lBQ1gsSUFBSSxHQUFHLENBQUMsQ0FBQTtBQUNULFNBQUE7UUFDRCxJQUFJLElBQUksSUFBSSxDQUFBO0tBQ2IsUUFBUSxJQUFJLEtBQUssRUFBRSxFQUFDOztJQUdyQixPQUFPLElBQUksSUFBSSxLQUFLLENBQUE7QUFDdEI7O0FDcENBOzs7Ozs7QUFNRztBQUNhLFNBQUEsR0FBRyxDQUFFLENBQWdCLEVBQUUsQ0FBZ0IsRUFBQTtJQUNyRCxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFBRSxRQUFBLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDeEMsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQUUsUUFBQSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0FBRXhDLElBQUEsSUFBSSxDQUFDLEtBQUssRUFBRSxJQUFJLENBQUMsS0FBSyxFQUFFO0FBQUUsUUFBQSxPQUFPLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTs7QUFFMUMsSUFBQSxPQUFPLEdBQUcsQ0FBQyxDQUFDLENBQUMsR0FBRyxHQUF