no more NaN -> throw Exception
This commit is contained in:
parent
806cc27a6f
commit
0bd13b078e
|
@ -1 +1 @@
|
|||
function n(n){return n>=0?n:-n}function t(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function r(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let r=0n,e=1n,u=1n,f=0n;for(;0n!==n;){const o=t/n,i=t%n,g=r-u*o,c=e-f*o;t=n,n=i,r=u,e=f,u=g,f=c}return{g:t,x:r,y:e}}function e(t,r){let e="number"==typeof t?BigInt(n(t)):n(t),u="number"==typeof r?BigInt(n(r)):n(r);if(0n===e)return u;if(0n===u)return e;let f=0n;for(;0n===(1n&(e|u));)e>>=1n,u>>=1n,f++;for(;0n===(1n&e);)e>>=1n;do{for(;0n===(1n&u);)u>>=1n;if(e>u){const n=e;e=u,u=n}u-=e}while(0n!==u);return e<<f}function u(t,r){return"number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),0n===t&&0n===r?BigInt(0):n(t*r)/e(t,r)}function f(n,t){return n>=t?n:t}function o(n,t){return n>=t?t:n}function i(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)return NaN;const r=n%t;return r<0n?r+t:r}function g(n,t){try{const e=r(i(n,t),t);return 1n!==e.g?NaN:i(e.x,t)}catch(n){return NaN}}function c(t,r,e){if("number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),"number"==typeof e&&(e=BigInt(e)),e<=0n)return NaN;if(1n===e)return BigInt(0);if(t=i(t,e),r<0n)return g(c(t,n(r),e),e);let u=1n;for(;r>0;)r%2n===1n&&(u=u*t%e),r/=2n,t=t**2n%e;return u}export{n as abs,t as bitLength,r as eGcd,e as gcd,u as lcm,f as max,o as min,g as modInv,c as modPow,i as toZn};
|
||||
function n(n){return n>=0?n:-n}function t(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function r(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let r=0n,e=1n,o=1n,u=0n;for(;0n!==n;){const i=t/n,f=t%n,g=r-o*i,b=e-u*i;t=n,n=f,r=o,e=u,o=g,u=b}return{g:t,x:r,y:e}}function e(t,r){let e="number"==typeof t?BigInt(n(t)):n(t),o="number"==typeof r?BigInt(n(r)):n(r);if(0n===e)return o;if(0n===o)return e;let u=0n;for(;0n===(1n&(e|o));)e>>=1n,o>>=1n,u++;for(;0n===(1n&e);)e>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(e>o){const n=e;e=o,o=n}o-=e}while(0n!==o);return e<<u}function o(t,r){return"number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),0n===t&&0n===r?BigInt(0):n(t*r)/e(t,r)}function u(n,t){return n>=t?n:t}function i(n,t){return n>=t?t:n}function f(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)throw new RangeError("n must be > 0");const r=n%t;return r<0n?r+t:r}function g(n,t){const e=r(f(n,t),t);if(1n!==e.g)throw new RangeError(`${n.toString()} does not have inverse modulo ${t.toString()}`);return f(e.x,t)}function b(t,r,e){if("number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),"number"==typeof e&&(e=BigInt(e)),e<=0n)throw new RangeError("n must be > 0");if(1n===e)return 0n;if(t=f(t,e),r<0n)return g(b(t,n(r),e),e);let o=1n;for(;r>0;)r%2n===1n&&(o=o*t%e),r/=2n,t=t**2n%e;return o}export{n as abs,t as bitLength,r as eGcd,e as gcd,o as lcm,u as max,i as min,g as modInv,b as modPow,f as toZn};
|
||||
|
|
|
@ -1 +1 @@
|
|||
var bigintModArith=function(n){"use strict";function t(n){return n>=0?n:-n}function r(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let r=0n,e=1n,u=1n,i=0n;for(;0n!==n;){const o=t/n,f=t%n,c=r-u*o,g=e-i*o;t=n,n=f,r=u,e=i,u=c,i=g}return{g:t,x:r,y:e}}function e(n,r){let e="number"==typeof n?BigInt(t(n)):t(n),u="number"==typeof r?BigInt(t(r)):t(r);if(0n===e)return u;if(0n===u)return e;let i=0n;for(;0n===(1n&(e|u));)e>>=1n,u>>=1n,i++;for(;0n===(1n&e);)e>>=1n;do{for(;0n===(1n&u);)u>>=1n;if(e>u){const n=e;e=u,u=n}u-=e}while(0n!==u);return e<<i}function u(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)return NaN;const r=n%t;return r<0n?r+t:r}function i(n,t){try{const e=r(u(n,t),t);return 1n!==e.g?NaN:u(e.x,t)}catch(n){return NaN}}return n.abs=t,n.bitLength=function(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t},n.eGcd=r,n.gcd=e,n.lcm=function(n,r){return"number"==typeof n&&(n=BigInt(n)),"number"==typeof r&&(r=BigInt(r)),0n===n&&0n===r?BigInt(0):t(n*r)/e(n,r)},n.max=function(n,t){return n>=t?n:t},n.min=function(n,t){return n>=t?t:n},n.modInv=i,n.modPow=function n(r,e,o){if("number"==typeof r&&(r=BigInt(r)),"number"==typeof e&&(e=BigInt(e)),"number"==typeof o&&(o=BigInt(o)),o<=0n)return NaN;if(1n===o)return BigInt(0);if(r=u(r,o),e<0n)return i(n(r,t(e),o),o);let f=1n;for(;e>0;)e%2n===1n&&(f=f*r%o),e/=2n,r=r**2n%o;return f},n.toZn=u,Object.defineProperty(n,"__esModule",{value:!0}),n}({});
|
||||
var bigintModArith=function(n){"use strict";function t(n){return n>=0?n:-n}function r(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let r=0n,e=1n,o=1n,i=0n;for(;0n!==n;){const u=t/n,f=t%n,g=r-o*u,b=e-i*u;t=n,n=f,r=o,e=i,o=g,i=b}return{g:t,x:r,y:e}}function e(n,r){let e="number"==typeof n?BigInt(t(n)):t(n),o="number"==typeof r?BigInt(t(r)):t(r);if(0n===e)return o;if(0n===o)return e;let i=0n;for(;0n===(1n&(e|o));)e>>=1n,o>>=1n,i++;for(;0n===(1n&e);)e>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(e>o){const n=e;e=o,o=n}o-=e}while(0n!==o);return e<<i}function o(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)throw new RangeError("n must be > 0");const r=n%t;return r<0n?r+t:r}function i(n,t){const e=r(o(n,t),t);if(1n!==e.g)throw new RangeError(`${n.toString()} does not have inverse modulo ${t.toString()}`);return o(e.x,t)}return n.abs=t,n.bitLength=function(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t},n.eGcd=r,n.gcd=e,n.lcm=function(n,r){return"number"==typeof n&&(n=BigInt(n)),"number"==typeof r&&(r=BigInt(r)),0n===n&&0n===r?BigInt(0):t(n*r)/e(n,r)},n.max=function(n,t){return n>=t?n:t},n.min=function(n,t){return n>=t?t:n},n.modInv=i,n.modPow=function n(r,e,u){if("number"==typeof r&&(r=BigInt(r)),"number"==typeof e&&(e=BigInt(e)),"number"==typeof u&&(u=BigInt(u)),u<=0n)throw new RangeError("n must be > 0");if(1n===u)return 0n;if(r=o(r,u),e<0n)return i(n(r,t(e),u),u);let f=1n;for(;e>0;)e%2n===1n&&(f=f*r%u),e/=2n,r=r**2n%u;return f},n.toZn=o,Object.defineProperty(n,"__esModule",{value:!0}),n}({});
|
||||
|
|
|
@ -1 +1 @@
|
|||
!function(n,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((n="undefined"!=typeof globalThis?globalThis:n||self).bigintModArith={})}(this,(function(n){"use strict";function t(n){return n>=0?n:-n}function e(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let e=0n,r=1n,o=1n,i=0n;for(;0n!==n;){const f=t/n,u=t%n,c=e-o*f,g=r-i*f;t=n,n=u,e=o,r=i,o=c,i=g}return{g:t,x:e,y:r}}function r(n,e){let r="number"==typeof n?BigInt(t(n)):t(n),o="number"==typeof e?BigInt(t(e)):t(e);if(0n===r)return o;if(0n===o)return r;let i=0n;for(;0n===(1n&(r|o));)r>>=1n,o>>=1n,i++;for(;0n===(1n&r);)r>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(r>o){const n=r;r=o,o=n}o-=r}while(0n!==o);return r<<i}function o(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)return NaN;const e=n%t;return e<0n?e+t:e}function i(n,t){try{const r=e(o(n,t),t);return 1n!==r.g?NaN:o(r.x,t)}catch(n){return NaN}}n.abs=t,n.bitLength=function(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t},n.eGcd=e,n.gcd=r,n.lcm=function(n,e){return"number"==typeof n&&(n=BigInt(n)),"number"==typeof e&&(e=BigInt(e)),0n===n&&0n===e?BigInt(0):t(n*e)/r(n,e)},n.max=function(n,t){return n>=t?n:t},n.min=function(n,t){return n>=t?t:n},n.modInv=i,n.modPow=function n(e,r,f){if("number"==typeof e&&(e=BigInt(e)),"number"==typeof r&&(r=BigInt(r)),"number"==typeof f&&(f=BigInt(f)),f<=0n)return NaN;if(1n===f)return BigInt(0);if(e=o(e,f),r<0n)return i(n(e,t(r),f),f);let u=1n;for(;r>0;)r%2n===1n&&(u=u*e%f),r/=2n,e=e**2n%f;return u},n.toZn=o,Object.defineProperty(n,"__esModule",{value:!0})}));
|
||||
!function(n,e){"object"==typeof exports&&"undefined"!=typeof module?e(exports):"function"==typeof define&&define.amd?define(["exports"],e):e((n="undefined"!=typeof globalThis?globalThis:n||self).bigintModArith={})}(this,(function(n){"use strict";function e(n){return n>=0?n:-n}function t(n,e){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof e&&(e=BigInt(e)),n<=0n||e<=0n)throw new RangeError("a and b MUST be > 0");let t=0n,r=1n,o=1n,i=0n;for(;0n!==n;){const f=e/n,u=e%n,g=t-o*f,b=r-i*f;e=n,n=u,t=o,r=i,o=g,i=b}return{g:e,x:t,y:r}}function r(n,t){let r="number"==typeof n?BigInt(e(n)):e(n),o="number"==typeof t?BigInt(e(t)):e(t);if(0n===r)return o;if(0n===o)return r;let i=0n;for(;0n===(1n&(r|o));)r>>=1n,o>>=1n,i++;for(;0n===(1n&r);)r>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(r>o){const n=r;r=o,o=n}o-=r}while(0n!==o);return r<<i}function o(n,e){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof e&&(e=BigInt(e)),e<=0n)throw new RangeError("n must be > 0");const t=n%e;return t<0n?t+e:t}function i(n,e){const r=t(o(n,e),e);if(1n!==r.g)throw new RangeError(`${n.toString()} does not have inverse modulo ${e.toString()}`);return o(r.x,e)}n.abs=e,n.bitLength=function(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let e=1;do{e++}while((n>>=1n)>1n);return e},n.eGcd=t,n.gcd=r,n.lcm=function(n,t){return"number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),0n===n&&0n===t?BigInt(0):e(n*t)/r(n,t)},n.max=function(n,e){return n>=e?n:e},n.min=function(n,e){return n>=e?e:n},n.modInv=i,n.modPow=function n(t,r,f){if("number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),"number"==typeof f&&(f=BigInt(f)),f<=0n)throw new RangeError("n must be > 0");if(1n===f)return 0n;if(t=o(t,f),r<0n)return i(n(t,e(r),f),f);let u=1n;for(;r>0;)r%2n===1n&&(u=u*t%f),r/=2n,t=t**2n%f;return u},n.toZn=o,Object.defineProperty(n,"__esModule",{value:!0})}));
|
||||
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -10,6 +10,9 @@ export interface Egcd {
|
|||
* @param a
|
||||
* @param b
|
||||
*
|
||||
* @throws {RangeError}
|
||||
* This excepction is thrown if a or b are less than 0
|
||||
*
|
||||
* @returns A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||||
*/
|
||||
export declare function eGcd(a: number | bigint, b: number | bigint): Egcd;
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"version":3,"file":"egcd.d.ts","sourceRoot":"","sources":["../../../../src/ts/egcd.ts"],"names":[],"mappings":"AAAA,MAAM,WAAW,IAAI;IACnB,CAAC,EAAE,MAAM,CAAA;IACT,CAAC,EAAE,MAAM,CAAA;IACT,CAAC,EAAE,MAAM,CAAA;CACV;AACD;;;;;;;;GAQG;AACH,wBAAgB,IAAI,CAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,GAAG,IAAI,CA4B9D"}
|
||||
{"version":3,"file":"egcd.d.ts","sourceRoot":"","sources":["../../../../src/ts/egcd.ts"],"names":[],"mappings":"AAAA,MAAM,WAAW,IAAI;IACnB,CAAC,EAAE,MAAM,CAAA;IACT,CAAC,EAAE,MAAM,CAAA;IACT,CAAC,EAAE,MAAM,CAAA;CACV;AACD;;;;;;;;;;;GAWG;AACH,wBAAgB,IAAI,CAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,GAAG,IAAI,CA4B9D"}
|
|
@ -4,7 +4,10 @@
|
|||
* @param a The number to find an inverse for
|
||||
* @param n The modulo
|
||||
*
|
||||
* @returns The inverse modulo n or number NaN if it does not exist
|
||||
* @throws {RangeError}
|
||||
* Excpeption thorwn when a does not have inverse modulo n
|
||||
*
|
||||
* @returns The inverse modulo n
|
||||
*/
|
||||
export declare function modInv(a: number | bigint, n: number | bigint): bigint | number;
|
||||
export declare function modInv(a: number | bigint, n: number | bigint): bigint;
|
||||
//# sourceMappingURL=modInv.d.ts.map
|
|
@ -1 +1 @@
|
|||
{"version":3,"file":"modInv.d.ts","sourceRoot":"","sources":["../../../../src/ts/modInv.ts"],"names":[],"mappings":"AAEA;;;;;;;GAOG;AACH,wBAAgB,MAAM,CAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,GAAG,MAAM,GAAC,MAAM,CAWzE"}
|
||||
{"version":3,"file":"modInv.d.ts","sourceRoot":"","sources":["../../../../src/ts/modInv.ts"],"names":[],"mappings":"AAEA;;;;;;;;;;GAUG;AACH,wBAAgB,MAAM,CAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,GAAG,MAAM,CAOlE"}
|
|
@ -5,7 +5,10 @@
|
|||
* @param e exponent
|
||||
* @param n modulo
|
||||
*
|
||||
* @returns b**e mod n or number NaN if n <= 0
|
||||
* @throws {RangeError}
|
||||
* Excpeption thrown when n is not > 0
|
||||
*
|
||||
* @returns b**e mod n
|
||||
*/
|
||||
export declare function modPow(b: number | bigint, e: number | bigint, n: number | bigint): bigint | number;
|
||||
export declare function modPow(b: number | bigint, e: number | bigint, n: number | bigint): bigint;
|
||||
//# sourceMappingURL=modPow.d.ts.map
|
|
@ -1 +1 @@
|
|||
{"version":3,"file":"modPow.d.ts","sourceRoot":"","sources":["../../../../src/ts/modPow.ts"],"names":[],"mappings":"AAGA;;;;;;;;GAQG;AACH,wBAAgB,MAAM,CAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,GAAG,MAAM,GAAC,MAAM,CAsB3F"}
|
||||
{"version":3,"file":"modPow.d.ts","sourceRoot":"","sources":["../../../../src/ts/modPow.ts"],"names":[],"mappings":"AAGA;;;;;;;;;;;GAWG;AACH,wBAAgB,MAAM,CAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,GAAG,MAAM,CA0BpF"}
|
|
@ -4,10 +4,13 @@
|
|||
* @remarks
|
||||
* a and b must be the same type, either number or bigint
|
||||
*
|
||||
* @param {number|bigint} a An integer
|
||||
* @param {number|bigint} n The modulo
|
||||
* @param a - An integer
|
||||
* @param n - The modulo
|
||||
*
|
||||
* @returns A bigint with the smallest positive representation of a modulo n or number NaN if n < 0
|
||||
* @throws {RangeError}
|
||||
* Excpeption thrown when n is not > 0
|
||||
*
|
||||
* @returns A bigint with the smallest positive representation of a modulo n
|
||||
*/
|
||||
export declare function toZn(a: number | bigint, n: number | bigint): bigint | number;
|
||||
export declare function toZn(a: number | bigint, n: number | bigint): bigint;
|
||||
//# sourceMappingURL=toZn.d.ts.map
|
|
@ -1 +1 @@
|
|||
{"version":3,"file":"toZn.d.ts","sourceRoot":"","sources":["../../../../src/ts/toZn.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;GAUG;AACH,wBAAgB,IAAI,CAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,GAAG,MAAM,GAAC,MAAM,CAQvE"}
|
||||
{"version":3,"file":"toZn.d.ts","sourceRoot":"","sources":["../../../../src/ts/toZn.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;;;;GAaG;AACH,wBAAgB,IAAI,CAAE,CAAC,EAAE,MAAM,GAAC,MAAM,EAAE,CAAC,EAAE,MAAM,GAAC,MAAM,GAAG,MAAM,CAUhE"}
|
50
docs/API.md
50
docs/API.md
|
@ -41,7 +41,7 @@ Name | Type |
|
|||
|
||||
The absolute value of a
|
||||
|
||||
Defined in: [ts/abs.ts:8](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/abs.ts#L8)
|
||||
Defined in: [ts/abs.ts:8](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/abs.ts#L8)
|
||||
|
||||
___
|
||||
|
||||
|
@ -61,7 +61,7 @@ Name | Type |
|
|||
|
||||
The bit length
|
||||
|
||||
Defined in: [ts/bitLength.ts:7](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/bitLength.ts#L7)
|
||||
Defined in: [ts/bitLength.ts:7](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/bitLength.ts#L7)
|
||||
|
||||
___
|
||||
|
||||
|
@ -72,6 +72,9 @@ ___
|
|||
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
||||
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||||
|
||||
**`throws`** {RangeError}
|
||||
This excepction is thrown if a or b are less than 0
|
||||
|
||||
#### Parameters:
|
||||
|
||||
Name | Type |
|
||||
|
@ -83,7 +86,7 @@ Name | Type |
|
|||
|
||||
A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||||
|
||||
Defined in: [ts/egcd.ts:15](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/egcd.ts#L15)
|
||||
Defined in: [ts/egcd.ts:18](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/egcd.ts#L18)
|
||||
|
||||
___
|
||||
|
||||
|
@ -104,7 +107,7 @@ Name | Type |
|
|||
|
||||
The greatest common divisor of a and b
|
||||
|
||||
Defined in: [ts/gcd.ts:10](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/gcd.ts#L10)
|
||||
Defined in: [ts/gcd.ts:10](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/gcd.ts#L10)
|
||||
|
||||
___
|
||||
|
||||
|
@ -125,7 +128,7 @@ Name | Type |
|
|||
|
||||
The least common multiple of a and b
|
||||
|
||||
Defined in: [ts/lcm.ts:10](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/lcm.ts#L10)
|
||||
Defined in: [ts/lcm.ts:10](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/lcm.ts#L10)
|
||||
|
||||
___
|
||||
|
||||
|
@ -146,7 +149,7 @@ Name | Type |
|
|||
|
||||
Maximum of numbers a and b
|
||||
|
||||
Defined in: [ts/max.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/max.ts#L9)
|
||||
Defined in: [ts/max.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/max.ts#L9)
|
||||
|
||||
___
|
||||
|
||||
|
@ -167,16 +170,19 @@ Name | Type |
|
|||
|
||||
Minimum of numbers a and b
|
||||
|
||||
Defined in: [ts/min.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/min.ts#L9)
|
||||
Defined in: [ts/min.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/min.ts#L9)
|
||||
|
||||
___
|
||||
|
||||
### modInv
|
||||
|
||||
▸ **modInv**(`a`: *number* \| *bigint*, `n`: *number* \| *bigint*): *bigint* \| *number*
|
||||
▸ **modInv**(`a`: *number* \| *bigint*, `n`: *number* \| *bigint*): *bigint*
|
||||
|
||||
Modular inverse.
|
||||
|
||||
**`throws`** {RangeError}
|
||||
Excpeption thorwn when a does not have inverse modulo n
|
||||
|
||||
#### Parameters:
|
||||
|
||||
Name | Type | Description |
|
||||
|
@ -184,20 +190,23 @@ Name | Type | Description |
|
|||
`a` | *number* \| *bigint* | The number to find an inverse for |
|
||||
`n` | *number* \| *bigint* | The modulo |
|
||||
|
||||
**Returns:** *bigint* \| *number*
|
||||
**Returns:** *bigint*
|
||||
|
||||
The inverse modulo n or number NaN if it does not exist
|
||||
The inverse modulo n
|
||||
|
||||
Defined in: [ts/modInv.ts:11](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/modInv.ts#L11)
|
||||
Defined in: [ts/modInv.ts:14](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/modInv.ts#L14)
|
||||
|
||||
___
|
||||
|
||||
### modPow
|
||||
|
||||
▸ **modPow**(`b`: *number* \| *bigint*, `e`: *number* \| *bigint*, `n`: *number* \| *bigint*): *bigint* \| *number*
|
||||
▸ **modPow**(`b`: *number* \| *bigint*, `e`: *number* \| *bigint*, `n`: *number* \| *bigint*): *bigint*
|
||||
|
||||
Modular exponentiation b**e mod n. Currently using the right-to-left binary method
|
||||
|
||||
**`throws`** {RangeError}
|
||||
Excpeption thrown when n is not > 0
|
||||
|
||||
#### Parameters:
|
||||
|
||||
Name | Type | Description |
|
||||
|
@ -206,23 +215,26 @@ Name | Type | Description |
|
|||
`e` | *number* \| *bigint* | exponent |
|
||||
`n` | *number* \| *bigint* | modulo |
|
||||
|
||||
**Returns:** *bigint* \| *number*
|
||||
**Returns:** *bigint*
|
||||
|
||||
b**e mod n or number NaN if n <= 0
|
||||
b**e mod n
|
||||
|
||||
Defined in: [ts/modPow.ts:13](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/modPow.ts#L13)
|
||||
Defined in: [ts/modPow.ts:16](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/modPow.ts#L16)
|
||||
|
||||
___
|
||||
|
||||
### toZn
|
||||
|
||||
▸ **toZn**(`a`: *number* \| *bigint*, `n`: *number* \| *bigint*): *bigint* \| *number*
|
||||
▸ **toZn**(`a`: *number* \| *bigint*, `n`: *number* \| *bigint*): *bigint*
|
||||
|
||||
Finds the smallest positive element that is congruent to a in modulo n
|
||||
|
||||
**`remarks`**
|
||||
a and b must be the same type, either number or bigint
|
||||
|
||||
**`throws`** {RangeError}
|
||||
Excpeption thrown when n is not > 0
|
||||
|
||||
#### Parameters:
|
||||
|
||||
Name | Type | Description |
|
||||
|
@ -230,8 +242,8 @@ Name | Type | Description |
|
|||
`a` | *number* \| *bigint* | An integer |
|
||||
`n` | *number* \| *bigint* | The modulo |
|
||||
|
||||
**Returns:** *bigint* \| *number*
|
||||
**Returns:** *bigint*
|
||||
|
||||
A bigint with the smallest positive representation of a modulo n or number NaN if n < 0
|
||||
A bigint with the smallest positive representation of a modulo n
|
||||
|
||||
Defined in: [ts/toZn.ts:12](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/toZn.ts#L12)
|
||||
Defined in: [ts/toZn.ts:15](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/toZn.ts#L15)
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
|
||||
• **g**: *bigint*
|
||||
|
||||
Defined in: [ts/egcd.ts:2](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/egcd.ts#L2)
|
||||
Defined in: [ts/egcd.ts:2](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/egcd.ts#L2)
|
||||
|
||||
___
|
||||
|
||||
|
@ -24,7 +24,7 @@ ___
|
|||
|
||||
• **x**: *bigint*
|
||||
|
||||
Defined in: [ts/egcd.ts:3](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/egcd.ts#L3)
|
||||
Defined in: [ts/egcd.ts:3](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/egcd.ts#L3)
|
||||
|
||||
___
|
||||
|
||||
|
@ -32,4 +32,4 @@ ___
|
|||
|
||||
• **y**: *bigint*
|
||||
|
||||
Defined in: [ts/egcd.ts:4](https://github.com/juanelas/bigint-mod-arith/blob/6131edd/src/ts/egcd.ts#L4)
|
||||
Defined in: [ts/egcd.ts:4](https://github.com/juanelas/bigint-mod-arith/blob/806cc27/src/ts/egcd.ts#L4)
|
||||
|
|
|
@ -10,6 +10,9 @@ export interface Egcd {
|
|||
* @param a
|
||||
* @param b
|
||||
*
|
||||
* @throws {RangeError}
|
||||
* This excepction is thrown if a or b are less than 0
|
||||
*
|
||||
* @returns A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||||
*/
|
||||
export function eGcd (a: number|bigint, b: number|bigint): Egcd {
|
||||
|
|
|
@ -6,17 +6,16 @@ import { toZn } from './toZn'
|
|||
* @param a The number to find an inverse for
|
||||
* @param n The modulo
|
||||
*
|
||||
* @returns The inverse modulo n or number NaN if it does not exist
|
||||
* @throws {RangeError}
|
||||
* Excpeption thorwn when a does not have inverse modulo n
|
||||
*
|
||||
* @returns The inverse modulo n
|
||||
*/
|
||||
export function modInv (a: number|bigint, n: number|bigint): bigint|number {
|
||||
try {
|
||||
const egcd = eGcd(toZn(a, n), n)
|
||||
if (egcd.g !== 1n) {
|
||||
return NaN // modular inverse does not exist
|
||||
} else {
|
||||
return toZn(egcd.x, n)
|
||||
}
|
||||
} catch (error) {
|
||||
return NaN
|
||||
export function modInv (a: number|bigint, n: number|bigint): bigint {
|
||||
const egcd = eGcd(toZn(a, n), n)
|
||||
if (egcd.g !== 1n) {
|
||||
throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`) // modular inverse does not exist
|
||||
} else {
|
||||
return toZn(egcd.x, n)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -8,16 +8,23 @@ import { toZn } from './toZn'
|
|||
* @param e exponent
|
||||
* @param n modulo
|
||||
*
|
||||
* @returns b**e mod n or number NaN if n <= 0
|
||||
* @throws {RangeError}
|
||||
* Excpeption thrown when n is not > 0
|
||||
*
|
||||
* @returns b**e mod n
|
||||
*/
|
||||
export function modPow (b: number|bigint, e: number|bigint, n: number|bigint): bigint|number {
|
||||
export function modPow (b: number|bigint, e: number|bigint, n: number|bigint): bigint {
|
||||
if (typeof b === 'number') b = BigInt(b)
|
||||
if (typeof e === 'number') e = BigInt(e)
|
||||
if (typeof n === 'number') n = BigInt(n)
|
||||
|
||||
if (n <= 0n) { return NaN } else if (n === 1n) { return BigInt(0) }
|
||||
if (n <= 0n) {
|
||||
throw new RangeError('n must be > 0')
|
||||
} else if (n === 1n) {
|
||||
return 0n
|
||||
}
|
||||
|
||||
b = toZn(b, n) as bigint
|
||||
b = toZn(b, n)
|
||||
|
||||
if (e < 0n) {
|
||||
return modInv(modPow(b, abs(e), n), n)
|
||||
|
|
|
@ -4,16 +4,21 @@
|
|||
* @remarks
|
||||
* a and b must be the same type, either number or bigint
|
||||
*
|
||||
* @param {number|bigint} a An integer
|
||||
* @param {number|bigint} n The modulo
|
||||
* @param a - An integer
|
||||
* @param n - The modulo
|
||||
*
|
||||
* @returns A bigint with the smallest positive representation of a modulo n or number NaN if n < 0
|
||||
* @throws {RangeError}
|
||||
* Excpeption thrown when n is not > 0
|
||||
*
|
||||
* @returns A bigint with the smallest positive representation of a modulo n
|
||||
*/
|
||||
export function toZn (a: number|bigint, n: number|bigint): bigint|number {
|
||||
export function toZn (a: number|bigint, n: number|bigint): bigint {
|
||||
if (typeof a === 'number') a = BigInt(a)
|
||||
if (typeof n === 'number') n = BigInt(n)
|
||||
|
||||
if (n <= 0n) { return NaN }
|
||||
if (n <= 0n) {
|
||||
throw new RangeError('n must be > 0')
|
||||
}
|
||||
|
||||
const aZn = a % n
|
||||
return (aZn < 0n) ? aZn + n : aZn
|
||||
|
|
|
@ -14,21 +14,20 @@ describe('modInv', function () {
|
|||
a: BigInt(-2),
|
||||
n: BigInt(5),
|
||||
modInv: BigInt(2)
|
||||
},
|
||||
}]
|
||||
|
||||
const invalidInputs = [
|
||||
{
|
||||
a: BigInt(2),
|
||||
n: BigInt(4),
|
||||
modInv: NaN
|
||||
n: BigInt(4)
|
||||
},
|
||||
{
|
||||
a: BigInt(0),
|
||||
n: BigInt(0),
|
||||
modInv: NaN
|
||||
n: BigInt(0)
|
||||
},
|
||||
{
|
||||
a: BigInt(0),
|
||||
n: BigInt(37),
|
||||
modInv: NaN
|
||||
n: BigInt(37)
|
||||
}
|
||||
]
|
||||
for (const input of inputs) {
|
||||
|
@ -40,4 +39,16 @@ describe('modInv', function () {
|
|||
})
|
||||
})
|
||||
}
|
||||
for (const input of invalidInputs) {
|
||||
describe(`modInv(${input.a}, ${input.n})`, function () {
|
||||
it('should throw RangeError', function () {
|
||||
try {
|
||||
_pkg.modInv(input.a, input.n)
|
||||
throw new Error('should have failed')
|
||||
} catch (err) {
|
||||
chai.expect(err).to.be.instanceOf(RangeError)
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
})
|
||||
|
|
|
@ -1,11 +1,5 @@
|
|||
describe('modPow', function () {
|
||||
const inputs = [
|
||||
{
|
||||
a: BigInt(4),
|
||||
b: BigInt(-1),
|
||||
n: BigInt(0),
|
||||
modPow: NaN
|
||||
},
|
||||
{
|
||||
a: BigInt(4),
|
||||
b: BigInt(-1),
|
||||
|
@ -37,6 +31,13 @@ describe('modPow', function () {
|
|||
modPow: BigInt(2)
|
||||
}
|
||||
]
|
||||
const invalidInputs = [
|
||||
{
|
||||
a: BigInt(4),
|
||||
b: BigInt(-1),
|
||||
n: BigInt(0)
|
||||
}
|
||||
]
|
||||
|
||||
this.timeout(90000)
|
||||
for (const input of inputs) {
|
||||
|
@ -47,6 +48,18 @@ describe('modPow', function () {
|
|||
})
|
||||
})
|
||||
}
|
||||
for (const input of invalidInputs) {
|
||||
describe(`modPow(${input.a}, ${input.b}, ${input.n})`, function () {
|
||||
it('should throw RangeError', function () {
|
||||
try {
|
||||
_pkg.modPow(input.a, input.b, input.n)
|
||||
throw new Error('should have failed')
|
||||
} catch (err) {
|
||||
chai.expect(err).to.be.instanceOf(RangeError)
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
describe('Time profiling', function () {
|
||||
let iterations = 500
|
||||
it(`just testing ${iterations} iterations of a big modular exponentiation (1024 bits)`, function () {
|
||||
|
|
19
test/toZn.ts
19
test/toZn.ts
|
@ -16,6 +16,13 @@ describe('toZn', function () {
|
|||
toZn: BigInt(4)
|
||||
}
|
||||
]
|
||||
const invalidInputs = [
|
||||
{
|
||||
a: BigInt(4),
|
||||
n: BigInt(-1),
|
||||
toZn: BigInt(0)
|
||||
}
|
||||
]
|
||||
for (const input of inputs) {
|
||||
describe(`toZn(${input.a}, ${input.n})`, function () {
|
||||
it(`should return ${input.toZn}`, function () {
|
||||
|
@ -24,4 +31,16 @@ describe('toZn', function () {
|
|||
})
|
||||
})
|
||||
}
|
||||
for (const input of invalidInputs) {
|
||||
describe(`toZn(${input.a}, ${input.n})`, function () {
|
||||
it('should throw RangeError', function () {
|
||||
try {
|
||||
_pkg.toZn(input.a, input.n)
|
||||
throw new Error('should have failed')
|
||||
} catch (err) {
|
||||
chai.expect(err).to.be.instanceOf(RangeError)
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
})
|
||||
|
|
Loading…
Reference in New Issue