163 lines
4.6 KiB
Markdown
163 lines
4.6 KiB
Markdown
|
# bigint-mod-arith
|
||
|
|
||
|
Some extra functions to work with modular arithmetics using native JS (stage 3) implementation of BigInt.
|
||
|
|
||
|
## Usage examples
|
||
|
|
||
|
```javascript
|
||
|
const modArith = require('bigint-mod-arith');
|
||
|
|
||
|
let a = 5n;
|
||
|
let b = 2n;
|
||
|
let n = 19n;
|
||
|
|
||
|
console.log(modArith.modPow(a, b, n)); // prints 13
|
||
|
|
||
|
console.log(modArith.modInv(2n, 5n)); // prints 3
|
||
|
|
||
|
console.log(modArith.modInv(3n, 5n)); // prints 2
|
||
|
```
|
||
|
|
||
|
## Functions
|
||
|
|
||
|
<dl>
|
||
|
<dt><a href="#abs">abs(a)</a> ⇒ <code>bigint</code></dt>
|
||
|
<dd><p>Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0</p>
|
||
|
</dd>
|
||
|
<dt><a href="#gcd">gcd(a, b)</a> ⇒ <code>bigint</code></dt>
|
||
|
<dd><p>Greatest-common divisor of two integers based on the iterative binary algorithm.</p>
|
||
|
</dd>
|
||
|
<dt><a href="#lcm">lcm(a, b)</a> ⇒ <code>bigint</code></dt>
|
||
|
<dd><p>The least common multiple computed as abs(a*b)/gcd(a,b)</p>
|
||
|
</dd>
|
||
|
<dt><a href="#toZn">toZn(a, n)</a> ⇒ <code>bigint</code></dt>
|
||
|
<dd><p>Finds the smallest positive element that is congruent to a in modulo n</p>
|
||
|
</dd>
|
||
|
<dt><a href="#eGcd">eGcd(a, b)</a> ⇒ <code><a href="#egcdReturn">egcdReturn</a></code></dt>
|
||
|
<dd><p>An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
||
|
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
|
||
|
</dd>
|
||
|
<dt><a href="#modInv">modInv(a, n)</a> ⇒ <code>bigint</code></dt>
|
||
|
<dd><p>Modular inverse.</p>
|
||
|
</dd>
|
||
|
<dt><a href="#modPow">modPow(a, b, n)</a> ⇒ <code>bigint</code></dt>
|
||
|
<dd><p>Modular exponentiation a**b mod n</p>
|
||
|
</dd>
|
||
|
</dl>
|
||
|
|
||
|
## Typedefs
|
||
|
|
||
|
<dl>
|
||
|
<dt><a href="#egcdReturn">egcdReturn</a> : <code>Object</code></dt>
|
||
|
<dd><p>A triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
|
||
|
</dd>
|
||
|
</dl>
|
||
|
|
||
|
<a name="abs"></a>
|
||
|
|
||
|
## abs(a) ⇒ <code>bigint</code>
|
||
|
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
|
||
|
|
||
|
**Kind**: global function
|
||
|
**Returns**: <code>bigint</code> - the absolute value of a
|
||
|
|
||
|
| Param | Type |
|
||
|
| --- | --- |
|
||
|
| a | <code>number</code> \| <code>bigint</code> |
|
||
|
|
||
|
<a name="gcd"></a>
|
||
|
|
||
|
## gcd(a, b) ⇒ <code>bigint</code>
|
||
|
Greatest-common divisor of two integers based on the iterative binary algorithm.
|
||
|
|
||
|
**Kind**: global function
|
||
|
**Returns**: <code>bigint</code> - The greatest common divisor of a and b
|
||
|
|
||
|
| Param | Type |
|
||
|
| --- | --- |
|
||
|
| a | <code>number</code> \| <code>bigint</code> |
|
||
|
| b | <code>number</code> \| <code>bigint</code> |
|
||
|
|
||
|
<a name="lcm"></a>
|
||
|
|
||
|
## lcm(a, b) ⇒ <code>bigint</code>
|
||
|
The least common multiple computed as abs(a*b)/gcd(a,b)
|
||
|
|
||
|
**Kind**: global function
|
||
|
**Returns**: <code>bigint</code> - The least common multiple of a and b
|
||
|
|
||
|
| Param | Type |
|
||
|
| --- | --- |
|
||
|
| a | <code>number</code> \| <code>bigint</code> |
|
||
|
| b | <code>number</code> \| <code>bigint</code> |
|
||
|
|
||
|
<a name="toZn"></a>
|
||
|
|
||
|
## toZn(a, n) ⇒ <code>bigint</code>
|
||
|
Finds the smallest positive element that is congruent to a in modulo n
|
||
|
|
||
|
**Kind**: global function
|
||
|
**Returns**: <code>bigint</code> - The smallest positive representation of a in modulo n
|
||
|
|
||
|
| Param | Type | Description |
|
||
|
| --- | --- | --- |
|
||
|
| a | <code>number</code> \| <code>bigint</code> | An integer |
|
||
|
| n | <code>number</code> \| <code>bigint</code> | The modulo |
|
||
|
|
||
|
<a name="eGcd"></a>
|
||
|
|
||
|
## eGcd(a, b) ⇒ [<code>egcdReturn</code>](#egcdReturn)
|
||
|
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
||
|
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||
|
|
||
|
**Kind**: global function
|
||
|
|
||
|
| Param | Type |
|
||
|
| --- | --- |
|
||
|
| a | <code>number</code> \| <code>bigint</code> |
|
||
|
| b | <code>number</code> \| <code>bigint</code> |
|
||
|
|
||
|
<a name="modInv"></a>
|
||
|
|
||
|
## modInv(a, n) ⇒ <code>bigint</code>
|
||
|
Modular inverse.
|
||
|
|
||
|
**Kind**: global function
|
||
|
**Returns**: <code>bigint</code> - the inverse modulo n
|
||
|
|
||
|
| Param | Type | Description |
|
||
|
| --- | --- | --- |
|
||
|
| a | <code>number</code> \| <code>bigint</code> | The number to find an inverse for |
|
||
|
| n | <code>number</code> \| <code>bigint</code> | The modulo |
|
||
|
|
||
|
<a name="modPow"></a>
|
||
|
|
||
|
## modPow(a, b, n) ⇒ <code>bigint</code>
|
||
|
Modular exponentiation a**b mod n
|
||
|
|
||
|
**Kind**: global function
|
||
|
**Returns**: <code>bigint</code> - a**b mod n
|
||
|
|
||
|
| Param | Type | Description |
|
||
|
| --- | --- | --- |
|
||
|
| a | <code>number</code> \| <code>bigint</code> | base |
|
||
|
| b | <code>number</code> \| <code>bigint</code> | exponent |
|
||
|
| n | <code>number</code> \| <code>bigint</code> | modulo |
|
||
|
|
||
|
<a name="egcdReturn"></a>
|
||
|
|
||
|
## egcdReturn : <code>Object</code>
|
||
|
A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||
|
|
||
|
**Kind**: global typedef
|
||
|
**Properties**
|
||
|
|
||
|
| Name | Type |
|
||
|
| --- | --- |
|
||
|
| g | <code>bigint</code> |
|
||
|
| x | <code>bigint</code> |
|
||
|
| y | <code>bigint</code> |
|
||
|
|
||
|
|
||
|
* * *
|