# bigint-mod-arith Some extra functions to work with modular arithmetics using native JS (stage 3) implementation of BigInt. ## Usage examples ```javascript const modArith = require('bigint-mod-arith'); let a = 5n; let b = 2n; let n = 19n; console.log(modArith.modPow(a, b, n)); // prints 13 console.log(modArith.modInv(2n, 5n)); // prints 3 console.log(modArith.modInv(3n, 5n)); // prints 2 ``` ## Functions
abs(a)bigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

gcd(a, b)bigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

lcm(a, b)bigint

The least common multiple computed as abs(a*b)/gcd(a,b)

toZn(a, n)bigint

Finds the smallest positive element that is congruent to a in modulo n

eGcd(a, b)egcdReturn

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

modInv(a, n)bigint

Modular inverse.

modPow(a, b, n)bigint

Modular exponentiation a**b mod n

## Typedefs
egcdReturn : Object

A triple (g, x, y), such that ax + by = g = gcd(a, b).

## abs(a) ⇒ bigint Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 **Kind**: global function **Returns**: bigint - the absolute value of a | Param | Type | | --- | --- | | a | number \| bigint | ## gcd(a, b) ⇒ bigint Greatest-common divisor of two integers based on the iterative binary algorithm. **Kind**: global function **Returns**: bigint - The greatest common divisor of a and b | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ## lcm(a, b) ⇒ bigint The least common multiple computed as abs(a*b)/gcd(a,b) **Kind**: global function **Returns**: bigint - The least common multiple of a and b | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ## toZn(a, n) ⇒ bigint Finds the smallest positive element that is congruent to a in modulo n **Kind**: global function **Returns**: bigint - The smallest positive representation of a in modulo n | Param | Type | Description | | --- | --- | --- | | a | number \| bigint | An integer | | n | number \| bigint | The modulo | ## eGcd(a, b) ⇒ [egcdReturn](#egcdReturn) An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). **Kind**: global function | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ## modInv(a, n) ⇒ bigint Modular inverse. **Kind**: global function **Returns**: bigint - the inverse modulo n | Param | Type | Description | | --- | --- | --- | | a | number \| bigint | The number to find an inverse for | | n | number \| bigint | The modulo | ## modPow(a, b, n) ⇒ bigint Modular exponentiation a**b mod n **Kind**: global function **Returns**: bigint - a**b mod n | Param | Type | Description | | --- | --- | --- | | a | number \| bigint | base | | b | number \| bigint | exponent | | n | number \| bigint | modulo | ## egcdReturn : Object A triple (g, x, y), such that ax + by = g = gcd(a, b). **Kind**: global typedef **Properties** | Name | Type | | --- | --- | | g | bigint | | x | bigint | | y | bigint | * * *