bigint-mod-arith/lib/index.node.js

235 lines
4.6 KiB
JavaScript
Raw Normal View History

2020-04-06 22:49:13 +00:00
'use strict'
Object.defineProperty(exports, '__esModule', { value: true })
2020-04-08 09:53:15 +00:00
/**
* Some common functions for modular arithmetic using native JS implementation of BigInt
* @module bigint-mod-arith
*/
2020-04-06 22:49:13 +00:00
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
function abs (a) {
a = BigInt(a)
return (a >= 0n) ? a : -a
2020-04-06 22:49:13 +00:00
}
/**
* Returns the bitlength of a number
*
* @param {number|bigint} a
* @returns {number} - the bit length
*/
function bitLength (a) {
a = BigInt(a)
if (a === 1n) { return 1 }
2020-04-06 22:49:13 +00:00
let bits = 1
do {
bits++
} while ((a >>= 1n) > 1n)
2020-04-06 22:49:13 +00:00
return bits
}
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b).
*/
function eGcd (a, b) {
a = BigInt(a)
b = BigInt(b)
if (a <= 0n | b <= 0n) throw new RangeError('a and b MUST be > 0') // a and b MUST be positive
2020-04-06 22:49:13 +00:00
let x = 0n
let y = 1n
let u = 1n
let v = 0n
2020-04-06 22:49:13 +00:00
while (a !== 0n) {
2020-04-06 22:49:13 +00:00
const q = b / a
const r = b % a
const m = x - (u * q)
const n = y - (v * q)
b = a
a = r
x = u
y = v
u = m
v = n
}
return {
g: b,
2020-04-06 22:49:13 +00:00
x: x,
y: y
}
}
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
function gcd (a, b) {
a = abs(a)
b = abs(b)
if (a === 0n) { return b } else if (b === 0n) { return a }
2020-04-06 22:49:13 +00:00
let shift = 0n
while (!((a | b) & 1n)) {
a >>= 1n
b >>= 1n
2020-04-06 22:49:13 +00:00
shift++
}
while (!(a & 1n)) a >>= 1n
2020-04-06 22:49:13 +00:00
do {
while (!(b & 1n)) b >>= 1n
2020-04-06 22:49:13 +00:00
if (a > b) {
const x = a
a = b
b = x
}
b -= a
} while (b)
// rescale
return a << shift
}
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
function lcm (a, b) {
a = BigInt(a)
b = BigInt(b)
if (a === 0n && b === 0n) return BigInt(0)
2020-04-06 22:49:13 +00:00
return abs(a * b) / gcd(a, b)
}
/**
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} maximum of numbers a and b
*/
function max (a, b) {
a = BigInt(a)
b = BigInt(b)
return (a >= b) ? a : b
}
/**
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} minimum of numbers a and b
*/
function min (a, b) {
a = BigInt(a)
b = BigInt(b)
return (a >= b) ? b : a
}
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint|NaN} the inverse modulo n or NaN if it does not exist
2020-04-06 22:49:13 +00:00
*/
function modInv (a, n) {
try {
const egcd = eGcd(toZn(a, n), n)
if (egcd.g !== 1n) {
return NaN // modular inverse does not exist
} else {
return toZn(egcd.x, n)
}
} catch (error) {
return NaN
2020-04-06 22:49:13 +00:00
}
}
/**
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
*
* @param {number|bigint} b base
* @param {number|bigint} e exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} b**e mod n
*/
function modPow (b, e, n) {
n = BigInt(n)
if (n === 0n) { return NaN } else if (n === 1n) { return BigInt(0) }
2020-04-06 22:49:13 +00:00
b = toZn(b, n)
e = BigInt(e)
if (e < 0n) {
2020-04-06 22:49:13 +00:00
return modInv(modPow(b, abs(e), n), n)
}
let r = 1n
2020-04-06 22:49:13 +00:00
while (e > 0) {
if ((e % 2n) === 1n) {
2020-04-06 22:49:13 +00:00
r = (r * b) % n
}
e = e / 2n
b = b ** 2n % n
2020-04-06 22:49:13 +00:00
}
return r
}
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
function toZn (a, n) {
n = BigInt(n)
if (n <= 0) { return NaN }
a = BigInt(a) % n
return (a < 0) ? a + n : a
}
exports.abs = abs
exports.bitLength = bitLength
exports.eGcd = eGcd
exports.gcd = gcd
exports.lcm = lcm
exports.max = max
exports.min = min
exports.modInv = modInv
exports.modPow = modPow
exports.toZn = toZn