508 lines
21 KiB
Markdown
508 lines
21 KiB
Markdown
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
|
|
[![JavaScript Style Guide](https://img.shields.io/badge/code_style-standard-brightgreen.svg)](https://standardjs.com)
|
|
![Node CI](https://github.com/juanelas/bigint-crypto-utils/workflows/Node%20CI/badge.svg)
|
|
[![Coverage Status](https://coveralls.io/repos/github/juanelas/bigint-crypto-utils/badge.svg?branch=master)](https://coveralls.io/github/juanelas/bigint-crypto-utils?branch=master)
|
|
|
|
# bigint-crypto-utils
|
|
|
|
Arbitrary precision modular arithmetic, cryptographically secure random numbers and strong probable prime generation/testing.
|
|
|
|
It relies on the native JS implementation of ([BigInt](https://tc39.es/ecma262/#sec-bigint-objects)). It can be used by any [Web Browser or webview supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) and with Node.js (>=10.4.0). The bundles can be imported directly by the browser or in Angular projects, React apps, Node.js, etc.
|
|
|
|
Secure random numbers are generated using the native crypto implementation of the browsers ([Web Cryptography API](https://w3c.github.io/webcrypto/)) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html)). Strong probable prime generation and testing use Miller-Rabin primality tests and are automatically sped up using parallel workers both in browsers and Node.js.
|
|
|
|
> The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html).
|
|
|
|
## Installation
|
|
|
|
bigint-crypto-utils can be imported to your project with `npm`:
|
|
|
|
```bash
|
|
npm install bigint-crypto-utils
|
|
```
|
|
|
|
NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js. For web browsers, you can also directly download the [IIFE bundle](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.iife.js) or the [ESM bundle](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.mod.js) from the repository.
|
|
|
|
## Usage examples
|
|
|
|
Import your module as :
|
|
|
|
- Node.js
|
|
|
|
```javascript
|
|
const bigintCryptoUtils = require('bigint-crypto-utils')
|
|
... // your code here
|
|
```
|
|
|
|
- JavaScript native or TypeScript project (including React and Angular JS)
|
|
|
|
```javascript
|
|
import * as bigintCryptoUtils from 'bigint-crypto-utils'
|
|
... // your code here
|
|
```
|
|
|
|
`bigint-crypto-utils` **CANNOT BE POLYFILLED** to suport older browsers. If you are using webpack/babel to create your production bundles, you should target only the most modern browsers. For instance, for **React** apps created with [`create-react-app`](https://create-react-app.dev/), you should edit your `package.json` and modify the `browserList` so that it only targets the latest browsers (play with the number of versions that do not need polyfilling):
|
|
|
|
```json
|
|
"browserslist": {
|
|
"production": [
|
|
"last 1 chrome version",
|
|
"last 1 firefox version",
|
|
"last 1 safari version"
|
|
],
|
|
"development": [
|
|
"last 1 chrome version",
|
|
"last 1 firefox version",
|
|
"last 1 safari version"
|
|
]
|
|
}
|
|
```
|
|
|
|
Also, notice that [BigInt implementation is ES2020](https://tc39.es/ecma262/#sec-bigint-objects). In order to use it with TypeScript you will probably need to set `lib`, `target` and/or `module` to `es2020` in your project's `tsconfig.json`.
|
|
|
|
If you are using Angular, since this library uses node typings, you should also add them to the `angularCompilerOptions` in your `tsconfig.json`:
|
|
|
|
```json
|
|
"angularCompilerOptions": {
|
|
"types": ["node"]
|
|
...
|
|
}
|
|
```
|
|
|
|
- JavaScript native browser ES module
|
|
|
|
```html
|
|
<script type="module">
|
|
import * as bigintCryptoUtils from 'index.browser.bundle.mod.js' // Use your actual path to the broser mod bundle that is in the lib directory
|
|
... // your code here
|
|
</script>
|
|
```
|
|
|
|
- JavaScript native browser IIFE
|
|
|
|
```html
|
|
<head>
|
|
...
|
|
<script src="index.browser.bundle.iife.js"></script> <!-- Use your actual path to the browser iife bundle that is in the lib directory -->
|
|
</head>
|
|
<body>
|
|
...
|
|
<script>
|
|
... // your code here
|
|
</script>
|
|
</body>
|
|
```
|
|
|
|
An example of usage could be:
|
|
|
|
```javascript
|
|
/* A BigInt with value 666 can be declared calling the bigint constructor as
|
|
BigInt('666') or with the shorter 666n.
|
|
Notice that you can also pass a number to the constructor, e.g. BigInt(666).
|
|
However, it is not recommended since values over 2**53 - 1 won't be safe but
|
|
no warning will be raised.
|
|
*/
|
|
const a = BigInt('5')
|
|
const b = BigInt('2')
|
|
const n = 19n
|
|
|
|
console.log(bigintCryptoUtils.modPow(a, b, n)) // prints 6
|
|
|
|
console.log(bigintCryptoUtils.modInv(2n, 5n)) // prints 3
|
|
|
|
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))) // prints 2
|
|
|
|
console.log(bigintCryptoUtils.randBetween(2n ** 256n)) // Prints a cryptographically secure random number between 1 and 2**256 bits.
|
|
|
|
async function primeTesting () {
|
|
// Output of a probable prime of 2048 bits
|
|
console.log(await bigintCryptoUtils.prime(2048))
|
|
|
|
// Testing if a number is a probable prime (Miller-Rabin)
|
|
const number = 27n
|
|
const isPrime = await bigintCryptoUtils.isProbablyPrime(number)
|
|
if (isPrime) {
|
|
console.log(`${number} is prime`)
|
|
} else {
|
|
console.log(`${number} is composite`)
|
|
}
|
|
}
|
|
|
|
primeTesting()
|
|
|
|
```
|
|
|
|
You can find examples in the [examples folder of the repository](https://github.com/juanelas/bigint-crypto-utils/tree/master/examples).
|
|
|
|
## API reference documentation
|
|
|
|
### Functions
|
|
|
|
<dl>
|
|
<dt><a href="#abs">abs(a)</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0</p>
|
|
</dd>
|
|
<dt><a href="#bitLength">bitLength(a)</a> ⇒ <code>number</code></dt>
|
|
<dd><p>Returns the bitlength of a number</p>
|
|
</dd>
|
|
<dt><a href="#eGcd">eGcd(a, b)</a> ⇒ <code><a href="#egcdReturn">egcdReturn</a></code></dt>
|
|
<dd><p>An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
|
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
|
|
</dd>
|
|
<dt><a href="#gcd">gcd(a, b)</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>Greatest-common divisor of two integers based on the iterative binary algorithm.</p>
|
|
</dd>
|
|
<dt><a href="#isProbablyPrime">isProbablyPrime(w, [iterations], [disableWorkers])</a> ⇒ <code>Promise.<boolean></code></dt>
|
|
<dd><p>The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
|
|
iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)</p>
|
|
</dd>
|
|
<dt><a href="#lcm">lcm(a, b)</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>The least common multiple computed as abs(a*b)/gcd(a,b)</p>
|
|
</dd>
|
|
<dt><a href="#max">max(a, b)</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b</p>
|
|
</dd>
|
|
<dt><a href="#min">min(a, b)</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b</p>
|
|
</dd>
|
|
<dt><a href="#modInv">modInv(a, n)</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>Modular inverse.</p>
|
|
</dd>
|
|
<dt><a href="#modPow">modPow(b, e, n)</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>Modular exponentiation b**e mod n. Currently using the right-to-left binary method</p>
|
|
</dd>
|
|
<dt><a href="#prime">prime(bitLength, [iterations])</a> ⇒ <code>Promise.<bigint></code></dt>
|
|
<dd><p>A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
|
The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
|
|
main process, and it can be much faster (if several cores or cpu are available).
|
|
The node version can also use worker_threads if they are available (enabled by default with Node 11 and
|
|
and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).</p>
|
|
</dd>
|
|
<dt><a href="#primeSync">primeSync(bitLength, [iterations])</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
|
The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.</p>
|
|
</dd>
|
|
<dt><a href="#randBetween">randBetween(max, [min])</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>Returns a cryptographically secure random integer between [min,max]. Both numbers must be >=0</p>
|
|
</dd>
|
|
<dt><a href="#randBits">randBits(bitLength, [forceLength])</a> ⇒ <code>Promise.<(Buffer|Uint8Array)></code></dt>
|
|
<dd><p>Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()</p>
|
|
</dd>
|
|
<dt><a href="#randBitsSync">randBitsSync(bitLength, [forceLength])</a> ⇒ <code>Buffer</code> | <code>Uint8Array</code></dt>
|
|
<dd><p>Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()</p>
|
|
</dd>
|
|
<dt><a href="#randBytes">randBytes(byteLength, [forceLength])</a> ⇒ <code>Promise.<(Buffer|Uint8Array)></code></dt>
|
|
<dd><p>Secure random bytes for both node and browsers. Node version uses crypto.randomBytes() and browser one self.crypto.getRandomValues()</p>
|
|
</dd>
|
|
<dt><a href="#randBytesSync">randBytesSync(byteLength, [forceLength])</a> ⇒ <code>Buffer</code> | <code>Uint8Array</code></dt>
|
|
<dd><p>Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()</p>
|
|
</dd>
|
|
<dt><a href="#toZn">toZn(a, n)</a> ⇒ <code>bigint</code></dt>
|
|
<dd><p>Finds the smallest positive element that is congruent to a in modulo n</p>
|
|
</dd>
|
|
</dl>
|
|
|
|
### Typedefs
|
|
|
|
<dl>
|
|
<dt><a href="#egcdReturn">egcdReturn</a> : <code>Object</code></dt>
|
|
<dd><p>A triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
|
|
</dd>
|
|
</dl>
|
|
|
|
<a name="abs"></a>
|
|
|
|
### abs(a) ⇒ <code>bigint</code>
|
|
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - the absolute value of a
|
|
|
|
| Param | Type |
|
|
| --- | --- |
|
|
| a | <code>number</code> \| <code>bigint</code> |
|
|
|
|
<a name="bitLength"></a>
|
|
|
|
### bitLength(a) ⇒ <code>number</code>
|
|
Returns the bitlength of a number
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>number</code> - - the bit length
|
|
|
|
| Param | Type |
|
|
| --- | --- |
|
|
| a | <code>number</code> \| <code>bigint</code> |
|
|
|
|
<a name="eGcd"></a>
|
|
|
|
### eGcd(a, b) ⇒ [<code>egcdReturn</code>](#egcdReturn)
|
|
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
|
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
|
|
**Kind**: global function
|
|
**Returns**: [<code>egcdReturn</code>](#egcdReturn) - A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> a and b MUST be > 0
|
|
|
|
|
|
| Param | Type |
|
|
| --- | --- |
|
|
| a | <code>number</code> \| <code>bigint</code> |
|
|
| b | <code>number</code> \| <code>bigint</code> |
|
|
|
|
<a name="egcdReturn"></a>
|
|
|
|
### egcdReturn : <code>Object</code>
|
|
A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
|
|
**Kind**: global typedef
|
|
**Properties**
|
|
|
|
| Name | Type |
|
|
| --- | --- |
|
|
| g | <code>bigint</code> |
|
|
| x | <code>bigint</code> |
|
|
| y | <code>bigint</code> |
|
|
|
|
<a name="gcd"></a>
|
|
|
|
### gcd(a, b) ⇒ <code>bigint</code>
|
|
Greatest-common divisor of two integers based on the iterative binary algorithm.
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - The greatest common divisor of a and b
|
|
|
|
| Param | Type |
|
|
| --- | --- |
|
|
| a | <code>number</code> \| <code>bigint</code> |
|
|
| b | <code>number</code> \| <code>bigint</code> |
|
|
|
|
<a name="isProbablyPrime"></a>
|
|
|
|
### isProbablyPrime(w, [iterations], [disableWorkers]) ⇒ <code>Promise.<boolean></code>
|
|
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
|
|
iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>Promise.<boolean></code> - A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> w MUST be >= 0
|
|
|
|
|
|
| Param | Type | Default | Description |
|
|
| --- | --- | --- | --- |
|
|
| w | <code>number</code> \| <code>bigint</code> | | A positive integer to be tested for primality |
|
|
| [iterations] | <code>number</code> | <code>16</code> | The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 |
|
|
| [disableWorkers] | <code>boolean</code> | <code>false</code> | Disable the use of workers for the primality test |
|
|
|
|
<a name="lcm"></a>
|
|
|
|
### lcm(a, b) ⇒ <code>bigint</code>
|
|
The least common multiple computed as abs(a*b)/gcd(a,b)
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - The least common multiple of a and b
|
|
|
|
| Param | Type |
|
|
| --- | --- |
|
|
| a | <code>number</code> \| <code>bigint</code> |
|
|
| b | <code>number</code> \| <code>bigint</code> |
|
|
|
|
<a name="max"></a>
|
|
|
|
### max(a, b) ⇒ <code>bigint</code>
|
|
Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - maximum of numbers a and b
|
|
|
|
| Param | Type |
|
|
| --- | --- |
|
|
| a | <code>number</code> \| <code>bigint</code> |
|
|
| b | <code>number</code> \| <code>bigint</code> |
|
|
|
|
<a name="min"></a>
|
|
|
|
### min(a, b) ⇒ <code>bigint</code>
|
|
Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - minimum of numbers a and b
|
|
|
|
| Param | Type |
|
|
| --- | --- |
|
|
| a | <code>number</code> \| <code>bigint</code> |
|
|
| b | <code>number</code> \| <code>bigint</code> |
|
|
|
|
<a name="modInv"></a>
|
|
|
|
### modInv(a, n) ⇒ <code>bigint</code>
|
|
Modular inverse.
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - the inverse modulo n
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> a does not have inverse modulo n
|
|
|
|
|
|
| Param | Type | Description |
|
|
| --- | --- | --- |
|
|
| a | <code>number</code> \| <code>bigint</code> | The number to find an inverse for |
|
|
| n | <code>number</code> \| <code>bigint</code> | The modulo |
|
|
|
|
<a name="modPow"></a>
|
|
|
|
### modPow(b, e, n) ⇒ <code>bigint</code>
|
|
Modular exponentiation b**e mod n. Currently using the right-to-left binary method
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - b**e mod n
|
|
|
|
| Param | Type | Description |
|
|
| --- | --- | --- |
|
|
| b | <code>number</code> \| <code>bigint</code> | base |
|
|
| e | <code>number</code> \| <code>bigint</code> | exponent |
|
|
| n | <code>number</code> \| <code>bigint</code> | modulo |
|
|
|
|
<a name="prime"></a>
|
|
|
|
### prime(bitLength, [iterations]) ⇒ <code>Promise.<bigint></code>
|
|
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
|
The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
|
|
main process, and it can be much faster (if several cores or cpu are available).
|
|
The node version can also use worker_threads if they are available (enabled by default with Node 11 and
|
|
and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>Promise.<bigint></code> - A promise that resolves to a bigint probable prime of bitLength bits.
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> bitLength MUST be > 0
|
|
|
|
|
|
| Param | Type | Default | Description |
|
|
| --- | --- | --- | --- |
|
|
| bitLength | <code>number</code> | | The required bit length for the generated prime |
|
|
| [iterations] | <code>number</code> | <code>16</code> | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
|
|
|
|
<a name="primeSync"></a>
|
|
|
|
### primeSync(bitLength, [iterations]) ⇒ <code>bigint</code>
|
|
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
|
The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - A bigint probable prime of bitLength bits.
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> bitLength MUST be > 0
|
|
|
|
|
|
| Param | Type | Default | Description |
|
|
| --- | --- | --- | --- |
|
|
| bitLength | <code>number</code> | | The required bit length for the generated prime |
|
|
| [iterations] | <code>number</code> | <code>16</code> | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
|
|
|
|
<a name="randBetween"></a>
|
|
|
|
### randBetween(max, [min]) ⇒ <code>bigint</code>
|
|
Returns a cryptographically secure random integer between [min,max]. Both numbers must be >=0
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - A cryptographically secure random bigint between [min,max]
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> Arguments MUST be: max > 0 && min >=0 && max > min
|
|
|
|
|
|
| Param | Type | Default | Description |
|
|
| --- | --- | --- | --- |
|
|
| max | <code>bigint</code> | | Returned value will be <= max |
|
|
| [min] | <code>bigint</code> | <code>BigInt(1)</code> | Returned value will be >= min |
|
|
|
|
<a name="randBits"></a>
|
|
|
|
### randBits(bitLength, [forceLength]) ⇒ <code>Promise.<(Buffer\|Uint8Array)></code>
|
|
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>Promise.<(Buffer\|Uint8Array)></code> - A Promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> bitLength MUST be > 0
|
|
|
|
|
|
| Param | Type | Default | Description |
|
|
| --- | --- | --- | --- |
|
|
| bitLength | <code>number</code> | | The desired number of random bits |
|
|
| [forceLength] | <code>boolean</code> | <code>false</code> | If we want to force the output to have a specific bit length. It basically forces the msb to be 1 |
|
|
|
|
<a name="randBitsSync"></a>
|
|
|
|
### randBitsSync(bitLength, [forceLength]) ⇒ <code>Buffer</code> \| <code>Uint8Array</code>
|
|
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>Buffer</code> \| <code>Uint8Array</code> - A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> bitLength MUST be > 0
|
|
|
|
|
|
| Param | Type | Default | Description |
|
|
| --- | --- | --- | --- |
|
|
| bitLength | <code>number</code> | | The desired number of random bits |
|
|
| [forceLength] | <code>boolean</code> | <code>false</code> | If we want to force the output to have a specific bit length. It basically forces the msb to be 1 |
|
|
|
|
<a name="randBytes"></a>
|
|
|
|
### randBytes(byteLength, [forceLength]) ⇒ <code>Promise.<(Buffer\|Uint8Array)></code>
|
|
Secure random bytes for both node and browsers. Node version uses crypto.randomBytes() and browser one self.crypto.getRandomValues()
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>Promise.<(Buffer\|Uint8Array)></code> - A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> byteLength MUST be > 0
|
|
|
|
|
|
| Param | Type | Default | Description |
|
|
| --- | --- | --- | --- |
|
|
| byteLength | <code>number</code> | | The desired number of random bytes |
|
|
| [forceLength] | <code>boolean</code> | <code>false</code> | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
|
|
|
|
<a name="randBytesSync"></a>
|
|
|
|
### randBytesSync(byteLength, [forceLength]) ⇒ <code>Buffer</code> \| <code>Uint8Array</code>
|
|
Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>Buffer</code> \| <code>Uint8Array</code> - A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
|
|
**Throws**:
|
|
|
|
- <code>RangeError</code> byteLength MUST be > 0
|
|
|
|
|
|
| Param | Type | Default | Description |
|
|
| --- | --- | --- | --- |
|
|
| byteLength | <code>number</code> | | The desired number of random bytes |
|
|
| [forceLength] | <code>boolean</code> | <code>false</code> | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
|
|
|
|
<a name="toZn"></a>
|
|
|
|
### toZn(a, n) ⇒ <code>bigint</code>
|
|
Finds the smallest positive element that is congruent to a in modulo n
|
|
|
|
**Kind**: global function
|
|
**Returns**: <code>bigint</code> - The smallest positive representation of a in modulo n
|
|
|
|
| Param | Type | Description |
|
|
| --- | --- | --- |
|
|
| a | <code>number</code> \| <code>bigint</code> | An integer |
|
|
| n | <code>number</code> \| <code>bigint</code> | The modulo |
|
|
|