bigint-crypto-utils/README.md

243 lines
8.3 KiB
Markdown

[![JavaScript Style Guide](https://img.shields.io/badge/code_style-standard-brightgreen.svg)](https://standardjs.com)
# bigint-crypto-utils
Utils for working with cryptography using native JS ([ES-2020](https://tc39.es/ecma262/#sec-bigint-objects)) implementation of BigInt. It includes some extra functions to work with modular arithmetic along with secure random numbers and a fast strong probable prime generator/tester (parallelized multi-threaded Miller-Rabin primality test). It can be used by any [Web Browser or webview supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) and with Node.js (>=10.4.0). In the latter case, for multi-threaded primality tests, you should use Node.js v11 or newer or enable at runtime with `node --experimental-worker` with Node.js version >= 10.5.0 and < 11.
> The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html).
## Installation
bigint-crypto-utils is distributed for [web browsers and/or webviews supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.
bigint-crypto-utils can be imported to your project with `npm`:
```bash
npm install bigint-crypto-utils
```
NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.
For web browsers, you can also directly download the [IIFE bundle](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.js) or the [ES6 bundle module](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.mod.js) from GitHub.
## Usage examples
Import your module as :
- Node.js
```javascript
const bigintCryptoUtils = require('bigint-crypto-utils')
... // your code here
```
- JavaScript native project
```javascript
import * as bigintCryptoUtils from 'bigint-crypto-utils'
... // your code here
```
- JavaScript native browser ES6 mod
```html
<script type="module">
import * as bigintCryptoUtils from 'lib/index.browser.bundle.mod.js' // Use you actual path to the broser mod bundle
... // your code here
</script>
```
- JavaScript native browser IIFE
```html
<script src="../../lib/index.browser.bundle.js"></script> <!-- Use you actual path to the browser bundle -->
<script>
... // your code here
</script>
```
- TypeScript
```typescript
import * as bigintCryptoUtils from 'bigint-crypto-utils'
... // your code here
```
> BigInt is [ES-2020](https://tc39.es/ecma262/#sec-bigint-objects). In order to use it with TypeScript you should set `lib` (and probably also `target` and `module`) to `esnext` in `tsconfig.json`.
And you could use it like in the following:
```javascript
/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
or the shorter new no-so-linter-friendly syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
*/
const a = BigInt('5')
const b = BigInt('2')
const n = 19n
console.log(bigintCryptoUtils.modPow(a, b, n)) // prints 6
console.log(bigintCryptoUtils.modInv(2n, 5n)) // prints 3
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))) // prints 2
console.log(bigintCryptoUtils.randBetween(2n ** 256n)) // Prints a cryptographically secure random number between 1 and 2**256 bits.
async function primeTesting () {
// Output of a probable prime of 2048 bits
console.log(await bigintCryptoUtils.prime(2048))
// Testing if a number is a probable prime (Miller-Rabin)
const number = 27n
const isPrime = await bigintCryptoUtils.isProbablyPrime(number)
if (isPrime) {
console.log(`${number} is prime`)
} else {
console.log(`${number} is composite`)
}
}
primeTesting()
```
## API reference documentation
<a name="abs"></a>
### abs(a) ⇒ <code>bigint</code>
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
**Kind**: global function
**Returns**: <code>bigint</code> - the absolute value of a
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
<a name="bitLength"></a>
### bitLength(a) ⇒ <code>number</code>
Returns the bitlength of a number
**Kind**: global function
**Returns**: <code>number</code> - - the bit length
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
<a name="eGcd"></a>
### eGcd(a, b) ⇒ [<code>egcdReturn</code>](#egcdReturn)
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
**Kind**: global function
**Returns**: [<code>egcdReturn</code>](#egcdReturn) - A triple (g, x, y), such that ax + by = g = gcd(a, b).
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="gcd"></a>
### gcd(a, b) ⇒ <code>bigint</code>
Greatest-common divisor of two integers based on the iterative binary algorithm.
**Kind**: global function
**Returns**: <code>bigint</code> - The greatest common divisor of a and b
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="lcm"></a>
### lcm(a, b) ⇒ <code>bigint</code>
The least common multiple computed as abs(a*b)/gcd(a,b)
**Kind**: global function
**Returns**: <code>bigint</code> - The least common multiple of a and b
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="max"></a>
### max(a, b) ⇒ <code>bigint</code>
Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
**Kind**: global function
**Returns**: <code>bigint</code> - maximum of numbers a and b
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="min"></a>
### min(a, b) ⇒ <code>bigint</code>
Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
**Kind**: global function
**Returns**: <code>bigint</code> - minimum of numbers a and b
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="modInv"></a>
### modInv(a, n) ⇒ <code>bigint</code>
Modular inverse.
**Kind**: global function
**Returns**: <code>bigint</code> - the inverse modulo n or NaN if it does not exist
| Param | Type | Description |
| --- | --- | --- |
| a | <code>number</code> \| <code>bigint</code> | The number to find an inverse for |
| n | <code>number</code> \| <code>bigint</code> | The modulo |
<a name="modPow"></a>
### modPow(b, e, n) ⇒ <code>bigint</code>
Modular exponentiation b**e mod n. Currently using the right-to-left binary method
**Kind**: global function
**Returns**: <code>bigint</code> - b**e mod n
| Param | Type | Description |
| --- | --- | --- |
| b | <code>number</code> \| <code>bigint</code> | base |
| e | <code>number</code> \| <code>bigint</code> | exponent |
| n | <code>number</code> \| <code>bigint</code> | modulo |
<a name="toZn"></a>
### toZn(a, n) ⇒ <code>bigint</code>
Finds the smallest positive element that is congruent to a in modulo n
**Kind**: global function
**Returns**: <code>bigint</code> - The smallest positive representation of a in modulo n
| Param | Type | Description |
| --- | --- | --- |
| a | <code>number</code> \| <code>bigint</code> | An integer |
| n | <code>number</code> \| <code>bigint</code> | The modulo |
<a name="egcdReturn"></a>
### egcdReturn : <code>Object</code>
A triple (g, x, y), such that ax + by = g = gcd(a, b).
**Kind**: global typedef
**Properties**
| Name | Type |
| --- | --- |
| g | <code>bigint</code> |
| x | <code>bigint</code> |
| y | <code>bigint</code> |