14 KiB
bigint-crypto-utils - v3.2.2
Table of contents
Interfaces
Type Aliases
Functions
- abs
- bitLength
- crt
- eGcd
- gcd
- isProbablyPrime
- lcm
- max
- min
- modAdd
- modInv
- modMultiply
- modPow
- phi
- prime
- primeSync
- randBetween
- randBits
- randBitsSync
- randBytes
- randBytesSync
- toZn
Type Aliases
PrimeFactor
Ƭ PrimeFactor: number
| bigint
| PrimePower
PrimeFactorization
Ƭ PrimeFactorization: [bigint
, bigint
][]
PrimePower
Ƭ PrimePower: [number
| bigint
, number
| bigint
]
Functions
abs
▸ abs(a
): number
| bigint
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
Parameters
Name | Type |
---|---|
a |
number | bigint |
Returns
number
| bigint
The absolute value of a
bitLength
▸ bitLength(a
): number
Returns the (minimum) length of a number expressed in bits.
Parameters
Name | Type |
---|---|
a |
number | bigint |
Returns
number
The bit length
crt
▸ crt(remainders
, modulos
, modulo?
): bigint
Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). Provided that n_i are pairwise coprime, and a_i any integers, this function returns a solution for the following system of equations: x ≡ a_1 mod n_1 x ≡ a_2 mod n_2 ⋮ x ≡ a_k mod n_k
Parameters
Name | Type | Description |
---|---|---|
remainders |
bigint [] |
the array of remainders a_i. For example [17n, 243n, 344n] |
modulos |
bigint [] |
the array of modulos n_i. For example [769n, 2017n, 47701n] |
modulo? |
bigint |
the product of all modulos. Provided here just to save some operations if it is already known |
Returns
bigint
x
eGcd
▸ eGcd(a
, b
): Egcd
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
Throws
RangeError if a or b are <= 0
Parameters
Name | Type |
---|---|
a |
number | bigint |
b |
number | bigint |
Returns
A triple (g, x, y), such that ax + by = g = gcd(a, b).
gcd
▸ gcd(a
, b
): bigint
Greatest common divisor of two integers based on the iterative binary algorithm.
Parameters
Name | Type |
---|---|
a |
number | bigint |
b |
number | bigint |
Returns
bigint
The greatest common divisor of a and b
isProbablyPrime
▸ isProbablyPrime(w
, iterations?
, disableWorkers?
): Promise
<boolean
>
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
Throws
RangeError if w<0
Parameters
Name | Type | Default value | Description |
---|---|---|---|
w |
number | bigint |
undefined |
A positive integer to be tested for primality |
iterations |
number |
16 |
The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 of FIPS 186-4 |
disableWorkers |
boolean |
false |
Disable the use of workers for the primality test |
Returns
Promise
<boolean
>
A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
lcm
▸ lcm(a
, b
): bigint
The least common multiple computed as abs(a*b)/gcd(a,b)
Parameters
Name | Type |
---|---|
a |
number | bigint |
b |
number | bigint |
Returns
bigint
The least common multiple of a and b
max
▸ max(a
, b
): number
| bigint
Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<b
Parameters
Name | Type |
---|---|
a |
number | bigint |
b |
number | bigint |
Returns
number
| bigint
Maximum of numbers a and b
min
▸ min(a
, b
): number
| bigint
Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<b
Parameters
Name | Type |
---|---|
a |
number | bigint |
b |
number | bigint |
Returns
number
| bigint
Minimum of numbers a and b
modAdd
▸ modAdd(addends
, n
): bigint
Modular addition of (a_1 + ... + a_r) mod n
Parameters
Name | Type | Description |
---|---|---|
addends |
(number | bigint )[] |
an array of the numbers a_i to add. For example [3, 12353251235n, 1243, -12341232545990n] |
n |
number | bigint |
the modulo |
Returns
bigint
The smallest positive integer that is congruent with (a_1 + ... + a_r) mod n
modInv
▸ modInv(a
, n
): bigint
Modular inverse.
Throws
RangeError if a does not have inverse modulo n
Parameters
Name | Type | Description |
---|---|---|
a |
number | bigint |
The number to find an inverse for |
n |
number | bigint |
The modulo |
Returns
bigint
The inverse modulo n
modMultiply
▸ modMultiply(factors
, n
): bigint
Modular addition of (a_1 * ... * a_r) mod n *
Parameters
Name | Type | Description |
---|---|---|
factors |
(number | bigint )[] |
an array of the numbers a_i to multiply. For example [3, 12353251235n, 1243, -12341232545990n] * |
n |
number | bigint |
the modulo * |
Returns
bigint
The smallest positive integer that is congruent with (a_1 * ... * a_r) mod n
modPow
▸ modPow(b
, e
, n
, primeFactorization?
): bigint
Modular exponentiation b**e mod n. Currently using the right-to-left binary method if the prime factorization is not provided, or the chinese remainder theorem otherwise.
Throws
RangeError if n <= 0
Parameters
Name | Type | Description |
---|---|---|
b |
number | bigint |
base |
e |
number | bigint |
exponent |
n |
number | bigint |
modulo |
primeFactorization? |
PrimeFactor [] |
an array of the prime factors, for example [5n, 5n, 13n, 27n], or prime powers as [p, k], for instance 5, 2], [13, 1], [27, 1. If the prime factorization is provided the chinese remainder theorem is used to greatly speed up the exponentiation. |
Returns
bigint
b**e mod n
phi
▸ phi(primeFactorization
): bigint
A function that computes the Euler's totien function of a number n, whose prime power factorization is known
Parameters
Name | Type | Description |
---|---|---|
primeFactorization |
PrimeFactorization |
an array of arrays containing the prime power factorization of a number n. For example, for n = (p1k1)*(p2k2)...(pr**kr), one should provide p1, k1], [p2, k2], ... , [pr, kr |
Returns
bigint
phi((p1k1)*(p2k2)...(pr**kr))
prime
▸ prime(bitLength
, iterations?
): Promise
<bigint
>
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI main process, and it can be much faster (if several cores or cpu are available). The node version can also use worker_threads if they are available (enabled by default with Node 11 and and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
Throws
RangeError if bitLength < 1
Parameters
Name | Type | Default value | Description |
---|---|---|---|
bitLength |
number |
undefined |
The required bit length for the generated prime |
iterations |
number |
16 |
The number of iterations for the Miller-Rabin Probabilistic Primality Test |
Returns
Promise
<bigint
>
A promise that resolves to a bigint probable prime of bitLength bits.
primeSync
▸ primeSync(bitLength
, iterations?
): bigint
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
Throws
RangeError if bitLength < 1
Parameters
Name | Type | Default value | Description |
---|---|---|---|
bitLength |
number |
undefined |
The required bit length for the generated prime |
iterations |
number |
16 |
The number of iterations for the Miller-Rabin Probabilistic Primality Test |
Returns
bigint
A bigint probable prime of bitLength bits.
randBetween
▸ randBetween(max
, min?
): bigint
Returns a cryptographically secure random integer between [min,max].
Throws
RangeError if max <= min
Parameters
Name | Type | Description |
---|---|---|
max |
bigint |
Returned value will be <= max |
min |
bigint |
Returned value will be >= min |
Returns
bigint
A cryptographically secure random bigint between [min,max]
randBits
▸ randBits(bitLength
, forceLength?
): Promise
<Uint8Array
| Buffer
>
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
Throws
RangeError if bitLength < 1
Parameters
Name | Type | Default value | Description |
---|---|---|---|
bitLength |
number |
undefined |
The desired number of random bits |
forceLength |
boolean |
false |
Set to true if you want to force the output to have a specific bit length. It basically forces the msb to be 1 |
Returns
Promise
<Uint8Array
| Buffer
>
A Promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits
randBitsSync
▸ randBitsSync(bitLength
, forceLength?
): Uint8Array
| Buffer
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
Throws
RangeError if bitLength < 1
Parameters
Name | Type | Default value | Description |
---|---|---|---|
bitLength |
number |
undefined |
The desired number of random bits |
forceLength |
boolean |
false |
Set to true if you want to force the output to have a specific bit length. It basically forces the msb to be 1 |
Returns
Uint8Array
| Buffer
A Uint8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits
randBytes
▸ randBytes(byteLength
, forceLength?
): Promise
<Uint8Array
| Buffer
>
Secure random bytes for both node and browsers. Node version uses crypto.randomBytes() and browser one self.crypto.getRandomValues()
Throws
RangeError if byteLength < 1
Parameters
Name | Type | Default value | Description |
---|---|---|---|
byteLength |
number |
undefined |
The desired number of random bytes |
forceLength |
boolean |
false |
Set to true if you want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
Returns
Promise
<Uint8Array
| Buffer
>
A promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes
randBytesSync
▸ randBytesSync(byteLength
, forceLength?
): Uint8Array
| Buffer
Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() This is the synchronous version, consider using the asynchronous one for improved efficiency.
Throws
RangeError if byteLength < 1
Parameters
Name | Type | Default value | Description |
---|---|---|---|
byteLength |
number |
undefined |
The desired number of random bytes |
forceLength |
boolean |
false |
Set to true if you want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
Returns
Uint8Array
| Buffer
A UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes
toZn
▸ toZn(a
, n
): bigint
Finds the smallest positive element that is congruent to a in modulo n
Remarks
a and b must be the same type, either number or bigint
Throws
RangeError if n <= 0
Parameters
Name | Type | Description |
---|---|---|
a |
number | bigint |
An integer |
n |
number | bigint |
The modulo |
Returns
bigint
A bigint with the smallest positive representation of a modulo n