bigint-crypto-utils/README.hbs

88 lines
3.3 KiB
Handlebars

# bigint-utils
Some extra functions to work with modular arithmetics along with secure random numbers and probable prime (Miller-Rabin primality test) generation/testing using native JS (stage 3) implementation of BigInt. It can be used with Node.js (>=10.4.0) and [Web Browsers supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility).
_The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html)**_
Many platforms provide native support for cryptography, such as [webcrypto](https://w3c.github.io/webcrypto/Overview.html) or [node crypto](https://nodejs.org/dist/latest/docs/api/crypto.html).
## Installation
bigint-utils is distributed as both an ES6 and a CJS module.
The ES6 module is built for any [web browser supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility). The module only uses native javascript implementations and no polyfills had been applied.
The CJS module is built as a standard node module.
bigint-utils can be imported to your project with `npm`:
```bash
npm install bigint-utils
```
For web browsers, you can also [download the bundle from GitHub](https://raw.githubusercontent.com/juanelas/bigint-utils/master/dist/bigint-utils-latest.browser.mod.min.js).
## Usage example
With node js:
```javascript
const bigintUtils = require('bigint-utils');
// Stage 3 BigInts with value 666 can be declared as BigInt('666')
// or the shorter new no-so-linter-friendly syntax 666n
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
console.log(bigintModArith.modPow(a, b, n)); // prints 6
console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3
console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2
// Generation of a probable prime of 2048 bits
const prime = await bigintUtils.prime(2048);
// Testing if a prime is a probable prime (Miller-Rabin)
if ( await bigintUtils.isProbablyPrime(prime) )
// code if is prime
// Get a cryptographically secure random number between 1 and 2**256 bits.
const rnd = bigintUtils.randBetween(BigInt(2)**256);
```
From a browser, you can just load the module in a html page as:
```html
<script type="module">
import * as bigintUtils from 'bigint-utils-latest.browser.mod.min.js';
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
console.log(bigintModArith.modPow(a, b, n)); // prints 6
console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3
console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2
(async function () {
// Generation of a probable prime of 2018 bits
const p = await bigintSecrets.prime(2048);
// Testing if a prime is a probable prime (Miller-Rabin)
const isPrime = await bigintSecrets.isProbablyPrime(p);
alert(p.toString() + '\nIs prime?\n' + isPrime);
// Get a cryptographically secure random number between 1 and 2**256 bits.
const rnd = await bigintSecrets.randBetween(BigInt(2)**256);
alert(rnd);
})();
</script>
```
# bigint-utils JS Doc
{{>main}}
* * *