6cc3343eca | ||
---|---|---|
build | ||
dist | ||
src | ||
test | ||
.eslintrc.json | ||
.gitignore | ||
LICENSE | ||
README.hbs | ||
README.md | ||
package-lock.json | ||
package.json |
README.md
bigint-utils
Some extra functions to work with modular arithmetics along with secure random numbers and probable prime (Miller-Rabin primality test) generation/testing using native JS (stage 3) implementation of BigInt. It can be used with Node.js (>=10.4.0) and Web Browsers supporting BigInt.
The operations supported on BigInts are not constant time. BigInt can be therefore unsuitable for use in cryptography
Many platforms provide native support for cryptography, such as webcrypto or node crypto.
Installation
bigint-utils is distributed as both an ES6 and a CJS module.
The ES6 module is built for any web browser supporting BigInt. The module only uses native javascript implementations and no polyfills had been applied.
The CJS module is built as a standard node module.
bigint-utils can be imported to your project with npm
:
npm install bigint-utils
For web browsers, you can also download the bundle from GitHub.
Usage example
With node js:
const bigintUtils = require('bigint-utils');
// Stage 3 BigInts with value 666 can be declared as BigInt('666')
// or the shorter new no-so-linter-friendly syntax 666n
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
console.log(bigintModArith.modPow(a, b, n)); // prints 6
console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3
console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2
// Generation of a probable prime of 2048 bits
const prime = await bigintUtils.prime(2048);
// Testing if a prime is a probable prime (Miller-Rabin)
if ( await bigintUtils.isProbablyPrime(prime) )
// code if is prime
// Get a cryptographically secure random number between 1 and 2**256 bits.
const rnd = bigintUtils.randBetween(BigInt(2)**256);
From a browser, you can just load the module in a html page as:
<script type="module">
import * as bigintUtils from 'bigint-utils-latest.browser.mod.min.js';
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
console.log(bigintModArith.modPow(a, b, n)); // prints 6
console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3
console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2
(async function () {
// Generation of a probable prime of 2018 bits
const p = await bigintSecrets.prime(2048);
// Testing if a prime is a probable prime (Miller-Rabin)
const isPrime = await bigintSecrets.isProbablyPrime(p);
alert(p.toString() + '\nIs prime?\n' + isPrime);
// Get a cryptographically secure random number between 1 and 2**256 bits.
const rnd = await bigintSecrets.randBetween(BigInt(2)**256);
alert(rnd);
})();
</script>
bigint-utils JS Doc
Constants
- abs ⇒
bigint
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
- gcd ⇒
bigint
Greatest-common divisor of two integers based on the iterative binary algorithm.
- lcm ⇒
bigint
The least common multiple computed as abs(a*b)/gcd(a,b)
- toZn ⇒
bigint
Finds the smallest positive element that is congruent to a in modulo n
- eGcd ⇒
egcdReturn
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
- modInv ⇒
bigint
Modular inverse.
- modPow ⇒
bigint
Modular exponentiation a**b mod n
- randBytes ⇒
Promise
Secure random bytes for both node and browsers. Browser implementation uses WebWorkers in order to not lock the main process
- randBetween ⇒
Promise
Returns a cryptographically secure random integer between [min,max]
- isProbablyPrime ⇒
Promise
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
- prime ⇒
Promise
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator
Typedefs
- egcdReturn :
Object
A triple (g, x, y), such that ax + by = g = gcd(a, b).
abs ⇒ bigint
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
Kind: global constant
Returns: bigint
- the absolute value of a
Param | Type |
---|---|
a | number | bigint |
gcd ⇒ bigint
Greatest-common divisor of two integers based on the iterative binary algorithm.
Kind: global constant
Returns: bigint
- The greatest common divisor of a and b
Param | Type |
---|---|
a | number | bigint |
b | number | bigint |
lcm ⇒ bigint
The least common multiple computed as abs(a*b)/gcd(a,b)
Kind: global constant
Returns: bigint
- The least common multiple of a and b
Param | Type |
---|---|
a | number | bigint |
b | number | bigint |
toZn ⇒ bigint
Finds the smallest positive element that is congruent to a in modulo n
Kind: global constant
Returns: bigint
- The smallest positive representation of a in modulo n
Param | Type | Description |
---|---|---|
a | number | bigint |
An integer |
n | number | bigint |
The modulo |
eGcd ⇒ egcdReturn
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
Kind: global constant
Param | Type |
---|---|
a | number | bigint |
b | number | bigint |
modInv ⇒ bigint
Modular inverse.
Kind: global constant
Returns: bigint
- the inverse modulo n
Param | Type | Description |
---|---|---|
a | number | bigint |
The number to find an inverse for |
n | number | bigint |
The modulo |
modPow ⇒ bigint
Modular exponentiation a**b mod n
Kind: global constant
Returns: bigint
- a**b mod n
Param | Type | Description |
---|---|---|
a | number | bigint |
base |
b | number | bigint |
exponent |
n | number | bigint |
modulo |
randBytes ⇒ Promise
Secure random bytes for both node and browsers. Browser implementation uses WebWorkers in order to not lock the main process
Kind: global constant
Returns: Promise
- A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bytes
Param | Type | Description |
---|---|---|
byteLength | number |
The desired number of random bytes |
forceLength | boolean |
If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
randBetween ⇒ Promise
Returns a cryptographically secure random integer between [min,max]
Kind: global constant
Returns: Promise
- A promise that resolves to a cryptographically secure random bigint between [min,max]
Param | Type | Description |
---|---|---|
max | bigint |
Returned value will be <= max |
min | bigint |
Returned value will be >= min |
isProbablyPrime ⇒ Promise
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
Kind: global constant
Returns: Promise
- A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
Param | Type | Description |
---|---|---|
w | bigint |
An integer to be tested for primality |
iterations | number |
The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 |
prime ⇒ Promise
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator
Kind: global constant
Returns: Promise
- A promise that resolves to a bigint probable prime of bitLength bits
Param | Type | Description |
---|---|---|
bitLength | number |
The required bit length for the generated prime |
iterations | number |
The number of iterations for the Miller-Rabin Probabilistic Primality Test |
egcdReturn : Object
A triple (g, x, y), such that ax + by = g = gcd(a, b).
Kind: global typedef
Properties
Name | Type |
---|---|
g | bigint |
x | bigint |
y | bigint |