bigint-crypto-utils/README.md

330 lines
13 KiB
Markdown
Raw Normal View History

2019-04-23 09:33:48 +00:00
# bigint-crypto-utils
2019-04-19 07:42:28 +00:00
2019-04-25 15:28:42 +00:00
Utils for working with cryptography using native JS (stage 3) implementation of BigInt. It includes some extra functions to work with modular arithmetics along with secure random numbers and a fast strong probable prime generation/testing(parallelised multi-threaded Miller-Rabin primality test). It can be used by any [Web Browser or webview supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) and with Node.js (>=10.4.0). In the latter case, for multi-threaded primality tests, you should use Node.js 11 or enable at runtime with `node --experimental-worker` with Node.js >=10.5.0.
2019-04-19 07:42:28 +00:00
2019-04-25 15:28:42 +00:00
_The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html)._
2019-04-19 07:42:28 +00:00
## Installation
2019-04-25 15:28:42 +00:00
bigint-crypto-utils is distributed for [web browsers and/or webviews supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
bigint-crypto-utils can be imported to your project with `npm`:
2019-04-19 07:42:28 +00:00
```bash
2019-04-19 10:04:06 +00:00
npm install bigint-crypto-utils
2019-04-19 07:42:28 +00:00
```
2019-04-20 20:16:58 +00:00
NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.
2019-04-19 07:42:28 +00:00
2019-04-25 15:28:42 +00:00
For web browsers, you can also directly download the minimised version of the [IIFE file](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.min.js) or the [ES6 module](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.mod.min.js) from GitHub.
2019-04-19 07:42:28 +00:00
## Usage example
With node js:
```javascript
2019-04-19 10:04:06 +00:00
const bigintCryptoUtils = require('bigint-crypto-utils');
2019-04-19 07:42:28 +00:00
2019-04-21 07:39:28 +00:00
/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
2019-04-23 09:33:48 +00:00
or the shorter new no-so-linter-friendly syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
2019-04-21 07:39:28 +00:00
*/
2019-04-19 07:42:28 +00:00
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
2019-04-19 07:42:28 +00:00
// Generation of a probable prime of 2048 bits
2019-04-19 10:04:06 +00:00
const prime = await bigintCryptoUtils.prime(2048);
2019-04-19 07:42:28 +00:00
// Testing if a prime is a probable prime (Miller-Rabin)
2019-04-19 10:04:06 +00:00
if ( await bigintCryptoUtils.isProbablyPrime(prime) )
2019-04-23 09:33:48 +00:00
// code if is prime
2019-04-19 07:42:28 +00:00
// Get a cryptographically secure random number between 1 and 2**256 bits.
2019-04-23 09:33:48 +00:00
const rnd = bigintCryptoUtils.randBetween(BigInt(2) ** BigInt(256));
2019-04-19 07:42:28 +00:00
```
From a browser, you can just load the module in a html page as:
```html
2019-04-23 09:33:48 +00:00
<script type="module">
import * as bigintCryptoUtils from 'bigint-utils-latest.browser.mod.min.js';
2019-04-19 07:42:28 +00:00
2019-04-23 09:33:48 +00:00
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
2019-04-19 07:42:28 +00:00
2019-04-23 09:33:48 +00:00
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
2019-04-19 07:42:28 +00:00
2019-04-23 09:33:48 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
2019-04-19 07:42:28 +00:00
2019-04-23 09:33:48 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
2019-04-19 07:42:28 +00:00
2019-04-23 09:33:48 +00:00
(async function () {
// Generation of a probable prime of 2018 bits
const p = await bigintCryptoUtils.prime(2048);
2019-04-19 07:42:28 +00:00
2019-04-23 09:33:48 +00:00
// Testing if a prime is a probable prime (Miller-Rabin)
const isPrime = await bigintCryptoUtils.isProbablyPrime(p);
alert(p.toString() + '\nIs prime?\n' + isPrime);
2019-04-19 07:42:28 +00:00
2019-04-23 09:33:48 +00:00
// Get a cryptographically secure random number between 1 and 2**256 bits.
const rnd = await bigintCryptoUtils.randBetween(BigInt(2) ** BigInt(256));
alert(rnd);
})();
</script>
2019-04-19 07:42:28 +00:00
```
2019-04-19 10:04:06 +00:00
# bigint-crypto-utils JS Doc
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## Functions
2019-04-19 07:42:28 +00:00
<dl>
2019-04-19 14:40:11 +00:00
<dt><a href="#abs">abs(a)</a><code>bigint</code></dt>
2019-04-19 07:42:28 +00:00
<dd><p>Absolute value. abs(a)==a if a&gt;=0. abs(a)==-a if a&lt;0</p>
</dd>
<dt><a href="#bitLength">bitLength(a)</a><code>number</code></dt>
<dd><p>Returns the bitlength of a number</p>
</dd>
2019-04-19 14:40:11 +00:00
<dt><a href="#eGcd">eGcd(a, b)</a><code><a href="#egcdReturn">egcdReturn</a></code></dt>
2019-04-19 10:04:06 +00:00
<dd><p>An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
</dd>
2019-04-19 14:40:11 +00:00
<dt><a href="#gcd">gcd(a, b)</a><code>bigint</code></dt>
2019-04-19 07:42:28 +00:00
<dd><p>Greatest-common divisor of two integers based on the iterative binary algorithm.</p>
</dd>
2019-04-19 14:40:11 +00:00
<dt><a href="#isProbablyPrime">isProbablyPrime(w, iterations)</a><code>Promise</code></dt>
2019-04-20 20:11:44 +00:00
<dd><p>The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)</p>
2019-04-19 10:04:06 +00:00
</dd>
2019-04-19 14:40:11 +00:00
<dt><a href="#lcm">lcm(a, b)</a><code>bigint</code></dt>
2019-04-19 07:42:28 +00:00
<dd><p>The least common multiple computed as abs(a*b)/gcd(a,b)</p>
</dd>
2019-04-19 14:40:11 +00:00
<dt><a href="#modInv">modInv(a, n)</a><code>bigint</code></dt>
2019-04-19 07:42:28 +00:00
<dd><p>Modular inverse.</p>
</dd>
2019-04-19 14:40:11 +00:00
<dt><a href="#modPow">modPow(a, b, n)</a><code>bigint</code></dt>
2019-04-19 07:42:28 +00:00
<dd><p>Modular exponentiation a**b mod n</p>
</dd>
2019-04-19 14:40:11 +00:00
<dt><a href="#prime">prime(bitLength, iterations)</a><code>Promise</code></dt>
2019-04-19 10:04:06 +00:00
<dd><p>A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
2019-04-20 20:21:41 +00:00
main process, and it can be much faster (if several cores or cpu are available).
The node version can also use worker_threads if they are available (enabled by default with Node 11 and
2019-04-21 07:39:28 +00:00
and can be enabled at runtime executing node --experimental-worker with node &gt;=10.5.0).</p>
2019-04-19 07:42:28 +00:00
</dd>
2019-04-26 13:03:53 +00:00
<dt><a href="#randBetween">randBetween(max, min)</a><code>bigint</code></dt>
2019-04-19 07:42:28 +00:00
<dd><p>Returns a cryptographically secure random integer between [min,max]</p>
</dd>
2019-04-26 13:03:53 +00:00
<dt><a href="#randBits">randBits(bitLength, forceLength)</a><code>Buffer</code> | <code>Uint8Array</code></dt>
2019-04-20 20:11:44 +00:00
<dd><p>Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()</p>
</dd>
2019-04-26 13:03:53 +00:00
<dt><a href="#randBytes">randBytes(byteLength, forceLength)</a><code>Buffer</code> | <code>Uint8Array</code></dt>
2019-04-19 10:04:06 +00:00
<dd><p>Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()</p>
2019-04-19 07:42:28 +00:00
</dd>
2019-04-19 14:40:11 +00:00
<dt><a href="#toZn">toZn(a, n)</a><code>bigint</code></dt>
2019-04-19 10:04:06 +00:00
<dd><p>Finds the smallest positive element that is congruent to a in modulo n</p>
2019-04-19 07:42:28 +00:00
</dd>
</dl>
## Typedefs
<dl>
<dt><a href="#egcdReturn">egcdReturn</a> : <code>Object</code></dt>
<dd><p>A triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
</dd>
</dl>
<a name="abs"></a>
2019-04-19 14:40:11 +00:00
## abs(a) ⇒ <code>bigint</code>
2019-04-19 07:42:28 +00:00
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
**Returns**: <code>bigint</code> - the absolute value of a
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
<a name="bitLength"></a>
## bitLength(a) ⇒ <code>number</code>
Returns the bitlength of a number
**Kind**: global function
**Returns**: <code>number</code> - - the bit length
| Param | Type |
| --- | --- |
| a | <code>bigint</code> |
2019-04-19 10:04:06 +00:00
<a name="eGcd"></a>
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## eGcd(a, b) ⇒ [<code>egcdReturn</code>](#egcdReturn)
2019-04-19 10:04:06 +00:00
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
2019-04-19 10:04:06 +00:00
<a name="gcd"></a>
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## gcd(a, b) ⇒ <code>bigint</code>
2019-04-19 10:04:06 +00:00
Greatest-common divisor of two integers based on the iterative binary algorithm.
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: <code>bigint</code> - The greatest common divisor of a and b
2019-04-19 07:42:28 +00:00
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
2019-04-19 10:04:06 +00:00
<a name="isProbablyPrime"></a>
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## isProbablyPrime(w, iterations) ⇒ <code>Promise</code>
2019-04-20 20:11:44 +00:00
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-23 13:22:48 +00:00
**Returns**: <code>Promise</code> - A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-04-19 10:04:06 +00:00
| w | <code>bigint</code> | An integer to be tested for primality |
| iterations | <code>number</code> | The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 |
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
<a name="lcm"></a>
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## lcm(a, b) ⇒ <code>bigint</code>
2019-04-19 10:04:06 +00:00
The least common multiple computed as abs(a*b)/gcd(a,b)
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: <code>bigint</code> - The least common multiple of a and b
2019-04-19 07:42:28 +00:00
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="modInv"></a>
2019-04-19 14:40:11 +00:00
## modInv(a, n) ⇒ <code>bigint</code>
2019-04-19 07:42:28 +00:00
Modular inverse.
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
**Returns**: <code>bigint</code> - the inverse modulo n
| Param | Type | Description |
| --- | --- | --- |
| a | <code>number</code> \| <code>bigint</code> | The number to find an inverse for |
| n | <code>number</code> \| <code>bigint</code> | The modulo |
<a name="modPow"></a>
2019-04-19 14:40:11 +00:00
## modPow(a, b, n) ⇒ <code>bigint</code>
2019-04-19 07:42:28 +00:00
Modular exponentiation a**b mod n
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
**Returns**: <code>bigint</code> - a**b mod n
| Param | Type | Description |
| --- | --- | --- |
| a | <code>number</code> \| <code>bigint</code> | base |
| b | <code>number</code> \| <code>bigint</code> | exponent |
| n | <code>number</code> \| <code>bigint</code> | modulo |
2019-04-19 10:04:06 +00:00
<a name="prime"></a>
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## prime(bitLength, iterations) ⇒ <code>Promise</code>
2019-04-19 10:04:06 +00:00
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
2019-04-20 20:21:41 +00:00
main process, and it can be much faster (if several cores or cpu are available).
The node version can also use worker_threads if they are available (enabled by default with Node 11 and
2019-04-21 07:39:28 +00:00
and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: <code>Promise</code> - A promise that resolves to a bigint probable prime of bitLength bits
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-04-19 10:04:06 +00:00
| bitLength | <code>number</code> | The required bit length for the generated prime |
| iterations | <code>number</code> | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
2019-04-19 07:42:28 +00:00
<a name="randBetween"></a>
2019-04-26 13:03:53 +00:00
## randBetween(max, min) ⇒ <code>bigint</code>
2019-04-19 07:42:28 +00:00
Returns a cryptographically secure random integer between [min,max]
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-26 13:03:53 +00:00
**Returns**: <code>bigint</code> - A cryptographically secure random bigint between [min,max]
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
| max | <code>bigint</code> | Returned value will be <= max |
| min | <code>bigint</code> | Returned value will be >= min |
2019-04-20 20:11:44 +00:00
<a name="randBits"></a>
2019-04-26 13:03:53 +00:00
## randBits(bitLength, forceLength) ⇒ <code>Buffer</code> \| <code>Uint8Array</code>
2019-04-20 20:11:44 +00:00
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
**Kind**: global function
2019-04-29 10:29:23 +00:00
**Returns**: <code>Buffer</code> \| <code>Uint8Array</code> - A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
2019-04-20 20:11:44 +00:00
| Param | Type | Description |
| --- | --- | --- |
| bitLength | <code>number</code> | The desired number of random bits |
| forceLength | <code>boolean</code> | If we want to force the output to have a specific bit length. It basically forces the msb to be 1 |
2019-04-19 10:04:06 +00:00
<a name="randBytes"></a>
2019-04-19 07:42:28 +00:00
2019-04-26 13:03:53 +00:00
## randBytes(byteLength, forceLength) ⇒ <code>Buffer</code> \| <code>Uint8Array</code>
2019-04-19 10:04:06 +00:00
Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-29 10:29:23 +00:00
**Returns**: <code>Buffer</code> \| <code>Uint8Array</code> - A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-04-19 10:04:06 +00:00
| byteLength | <code>number</code> | The desired number of random bytes |
| forceLength | <code>boolean</code> | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
<a name="toZn"></a>
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## toZn(a, n) ⇒ <code>bigint</code>
2019-04-19 10:04:06 +00:00
Finds the smallest positive element that is congruent to a in modulo n
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: <code>bigint</code> - The smallest positive representation of a in modulo n
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-04-19 10:04:06 +00:00
| a | <code>number</code> \| <code>bigint</code> | An integer |
| n | <code>number</code> \| <code>bigint</code> | The modulo |
2019-04-19 07:42:28 +00:00
<a name="egcdReturn"></a>
## egcdReturn : <code>Object</code>
A triple (g, x, y), such that ax + by = g = gcd(a, b).
**Kind**: global typedef
**Properties**
| Name | Type |
| --- | --- |
| g | <code>bigint</code> |
| x | <code>bigint</code> |
| y | <code>bigint</code> |
2019-04-23 09:33:48 +00:00
* * *