2019-04-19 10:04:06 +00:00
# bigint-crypto-utils
2019-04-19 07:42:28 +00:00
2019-04-21 07:25:08 +00:00
Utils for working with cryptography using native JS (stage 3) implementation of BigInt. It includes some extra functions to work with modular arithmetics along with secure random numbers and a fast strong probable prime generation/testing (parallelised multi-threaded Miller-Rabin primality test). It can be used by any [Web Browser or webview supporting BigInt ](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility ) and with Node.js (>=10.4.0). In the former case, for multi-threaded primality tests, you should use Node.js 11 or enable at runtime with `node --experimental-worker` with Node.js >=10.5.0.
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
_The operations supported on BigInts are not constant time. BigInt can be therefore ** [unsuitable for use in cryptography ](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html ).** Many platforms provide native support for cryptography, such as [Web Cryptography API ](https://w3c.github.io/webcrypto/ ) or [Node.js Crypto ](https://nodejs.org/dist/latest/docs/api/crypto.html )._
2019-04-19 07:42:28 +00:00
## Installation
2019-04-21 07:39:28 +00:00
bigint-crypto-utils is distributed for [web browsers and/or webviews supporting BigInt ](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility ) as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
bigint-crypto-utils can be imported to your project with `npm` :
2019-04-19 07:42:28 +00:00
```bash
2019-04-19 10:04:06 +00:00
npm install bigint-crypto-utils
2019-04-19 07:42:28 +00:00
```
2019-04-20 20:16:58 +00:00
NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
For web browsers, you can also directly download the minimised version of the [IIFE file ](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.min.js ) or the [ES6 module ](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.mod.min.js ) from GitHub.
2019-04-19 07:42:28 +00:00
## Usage example
With node js:
```javascript
2019-04-19 10:04:06 +00:00
const bigintCryptoUtils = require('bigint-crypto-utils');
2019-04-19 07:42:28 +00:00
2019-04-21 07:39:28 +00:00
/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
or the shorter new no-so-linter-friendly syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
*/
2019-04-19 07:42:28 +00:00
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
2019-04-19 07:42:28 +00:00
// Generation of a probable prime of 2048 bits
2019-04-19 10:04:06 +00:00
const prime = await bigintCryptoUtils.prime(2048);
2019-04-19 07:42:28 +00:00
// Testing if a prime is a probable prime (Miller-Rabin)
2019-04-19 10:04:06 +00:00
if ( await bigintCryptoUtils.isProbablyPrime(prime) )
2019-04-19 07:42:28 +00:00
// code if is prime
// Get a cryptographically secure random number between 1 and 2**256 bits.
2019-04-21 07:42:10 +00:00
const rnd = bigintCryptoUtils.randBetween(BigInt(2)**BigInt(256));
2019-04-19 07:42:28 +00:00
```
From a browser, you can just load the module in a html page as:
```html
< script type = "module" >
2019-04-19 10:04:06 +00:00
import * as bigintCryptoUtils from 'bigint-utils-latest.browser.mod.min.js';
2019-04-19 07:42:28 +00:00
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
2019-04-19 07:42:28 +00:00
(async function () {
// Generation of a probable prime of 2018 bits
2019-04-19 10:04:06 +00:00
const p = await bigintCryptoUtils.prime(2048);
2019-04-19 07:42:28 +00:00
// Testing if a prime is a probable prime (Miller-Rabin)
2019-04-19 10:04:06 +00:00
const isPrime = await bigintCryptoUtils.isProbablyPrime(p);
2019-04-19 07:42:28 +00:00
alert(p.toString() + '\nIs prime?\n' + isPrime);
// Get a cryptographically secure random number between 1 and 2**256 bits.
2019-04-21 07:42:10 +00:00
const rnd = await bigintCryptoUtils.randBetween(BigInt(2)**BigInt(256));
2019-04-19 07:42:28 +00:00
alert(rnd);
})();
< / script >
```
2019-04-19 10:04:06 +00:00
# bigint-crypto-utils JS Doc
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## Functions
2019-04-19 07:42:28 +00:00
< dl >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#abs" > abs(a)< / a > ⇒ < code > bigint< / code > < / dt >
2019-04-19 07:42:28 +00:00
< dd > < p > Absolute value. abs(a)==a if a> =0. abs(a)==-a if a< 0< / p >
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#eGcd" > eGcd(a, b)< / a > ⇒ < code > < a href = "#egcdReturn" > egcdReturn< / a > < / code > < / dt >
2019-04-19 10:04:06 +00:00
< dd > < p > An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).< / p >
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#gcd" > gcd(a, b)< / a > ⇒ < code > bigint< / code > < / dt >
2019-04-19 07:42:28 +00:00
< dd > < p > Greatest-common divisor of two integers based on the iterative binary algorithm.< / p >
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#isProbablyPrime" > isProbablyPrime(w, iterations)< / a > ⇒ < code > Promise< / code > < / dt >
2019-04-20 20:11:44 +00:00
< dd > < p > The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)< / p >
2019-04-19 10:04:06 +00:00
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#lcm" > lcm(a, b)< / a > ⇒ < code > bigint< / code > < / dt >
2019-04-19 07:42:28 +00:00
< dd > < p > The least common multiple computed as abs(a*b)/gcd(a,b)< / p >
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#modInv" > modInv(a, n)< / a > ⇒ < code > bigint< / code > < / dt >
2019-04-19 07:42:28 +00:00
< dd > < p > Modular inverse.< / p >
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#modPow" > modPow(a, b, n)< / a > ⇒ < code > bigint< / code > < / dt >
2019-04-19 07:42:28 +00:00
< dd > < p > Modular exponentiation a**b mod n< / p >
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#prime" > prime(bitLength, iterations)< / a > ⇒ < code > Promise< / code > < / dt >
2019-04-19 10:04:06 +00:00
< dd > < p > A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
2019-04-20 20:21:41 +00:00
main process, and it can be much faster (if several cores or cpu are available).
The node version can also use worker_threads if they are available (enabled by default with Node 11 and
2019-04-21 07:39:28 +00:00
and can be enabled at runtime executing node --experimental-worker with node > =10.5.0).< / p >
2019-04-19 07:42:28 +00:00
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#randBetween" > randBetween(max, min)< / a > ⇒ < code > Promise< / code > < / dt >
2019-04-19 07:42:28 +00:00
< dd > < p > Returns a cryptographically secure random integer between [min,max]< / p >
< / dd >
2019-04-20 20:11:44 +00:00
< dt > < a href = "#randBits" > randBits(bitLength, forceLength)< / a > ⇒ < code > Promise< / code > < / dt >
< dd > < p > Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()< / p >
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#randBytes" > randBytes(byteLength, forceLength)< / a > ⇒ < code > Promise< / code > < / dt >
2019-04-19 10:04:06 +00:00
< dd > < p > Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()< / p >
2019-04-19 07:42:28 +00:00
< / dd >
2019-04-19 14:40:11 +00:00
< dt > < a href = "#toZn" > toZn(a, n)< / a > ⇒ < code > bigint< / code > < / dt >
2019-04-19 10:04:06 +00:00
< dd > < p > Finds the smallest positive element that is congruent to a in modulo n< / p >
2019-04-19 07:42:28 +00:00
< / dd >
< / dl >
## Typedefs
< dl >
< dt > < a href = "#egcdReturn" > egcdReturn< / a > : < code > Object< / code > < / dt >
< dd > < p > A triple (g, x, y), such that ax + by = g = gcd(a, b).< / p >
< / dd >
< / dl >
< a name = "abs" > < / a >
2019-04-19 14:40:11 +00:00
## abs(a) ⇒ <code>bigint</code>
2019-04-19 07:42:28 +00:00
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a< 0
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
**Returns**: < code > bigint< / code > - the absolute value of a
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
2019-04-19 10:04:06 +00:00
< a name = "eGcd" > < / a >
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## eGcd(a, b) ⇒ [<code>egcdReturn</code>](#egcdReturn)
2019-04-19 10:04:06 +00:00
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
| b | < code > number</ code > \| < code > bigint</ code > |
2019-04-19 10:04:06 +00:00
< a name = "gcd" > < / a >
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## gcd(a, b) ⇒ <code>bigint</code>
2019-04-19 10:04:06 +00:00
Greatest-common divisor of two integers based on the iterative binary algorithm.
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: < code > bigint< / code > - The greatest common divisor of a and b
2019-04-19 07:42:28 +00:00
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
| b | < code > number</ code > \| < code > bigint</ code > |
2019-04-19 10:04:06 +00:00
< a name = "isProbablyPrime" > < / a >
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## isProbablyPrime(w, iterations) ⇒ <code>Promise</code>
2019-04-20 20:11:44 +00:00
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: < code > Promise< / code > - A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-04-19 10:04:06 +00:00
| w | < code > bigint< / code > | An integer to be tested for primality |
| iterations | < code > number< / code > | The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 |
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
< a name = "lcm" > < / a >
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## lcm(a, b) ⇒ <code>bigint</code>
2019-04-19 10:04:06 +00:00
The least common multiple computed as abs(a*b)/gcd(a,b)
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: < code > bigint< / code > - The least common multiple of a and b
2019-04-19 07:42:28 +00:00
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
| b | < code > number</ code > \| < code > bigint</ code > |
< a name = "modInv" > < / a >
2019-04-19 14:40:11 +00:00
## modInv(a, n) ⇒ <code>bigint</code>
2019-04-19 07:42:28 +00:00
Modular inverse.
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
**Returns**: < code > bigint< / code > - the inverse modulo n
| Param | Type | Description |
| --- | --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > | The number to find an inverse for |
| n | < code > number</ code > \| < code > bigint</ code > | The modulo |
< a name = "modPow" > < / a >
2019-04-19 14:40:11 +00:00
## modPow(a, b, n) ⇒ <code>bigint</code>
2019-04-19 07:42:28 +00:00
Modular exponentiation a**b mod n
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
**Returns**: < code > bigint< / code > - a**b mod n
| Param | Type | Description |
| --- | --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > | base |
| b | < code > number</ code > \| < code > bigint</ code > | exponent |
| n | < code > number</ code > \| < code > bigint</ code > | modulo |
2019-04-19 10:04:06 +00:00
< a name = "prime" > < / a >
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## prime(bitLength, iterations) ⇒ <code>Promise</code>
2019-04-19 10:04:06 +00:00
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
2019-04-20 20:21:41 +00:00
main process, and it can be much faster (if several cores or cpu are available).
The node version can also use worker_threads if they are available (enabled by default with Node 11 and
2019-04-21 07:39:28 +00:00
and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: < code > Promise< / code > - A promise that resolves to a bigint probable prime of bitLength bits
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-04-19 10:04:06 +00:00
| bitLength | < code > number< / code > | The required bit length for the generated prime |
| iterations | < code > number< / code > | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
2019-04-19 07:42:28 +00:00
< a name = "randBetween" > < / a >
2019-04-19 14:40:11 +00:00
## randBetween(max, min) ⇒ <code>Promise</code>
2019-04-19 07:42:28 +00:00
Returns a cryptographically secure random integer between [min,max]
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
**Returns**: < code > Promise< / code > - A promise that resolves to a cryptographically secure random bigint between [min,max]
| Param | Type | Description |
| --- | --- | --- |
| max | < code > bigint< / code > | Returned value will be < = max |
| min | < code > bigint< / code > | Returned value will be >= min |
2019-04-20 20:11:44 +00:00
< a name = "randBits" > < / a >
## randBits(bitLength, forceLength) ⇒ <code>Promise</code>
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
**Kind**: global function
**Returns**: < code > Promise< / code > - A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bits
| Param | Type | Description |
| --- | --- | --- |
| bitLength | < code > number< / code > | The desired number of random bits |
| forceLength | < code > boolean< / code > | If we want to force the output to have a specific bit length. It basically forces the msb to be 1 |
2019-04-19 10:04:06 +00:00
< a name = "randBytes" > < / a >
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## randBytes(byteLength, forceLength) ⇒ <code>Promise</code>
2019-04-19 10:04:06 +00:00
Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: < code > Promise< / code > - A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bytes
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-04-19 10:04:06 +00:00
| byteLength | < code > number< / code > | The desired number of random bytes |
| forceLength | < code > boolean< / code > | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
< a name = "toZn" > < / a >
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
## toZn(a, n) ⇒ <code>bigint</code>
2019-04-19 10:04:06 +00:00
Finds the smallest positive element that is congruent to a in modulo n
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: < code > bigint< / code > - The smallest positive representation of a in modulo n
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-04-19 10:04:06 +00:00
| a | < code > number</ code > \| < code > bigint</ code > | An integer |
| n | < code > number</ code > \| < code > bigint</ code > | The modulo |
2019-04-19 07:42:28 +00:00
< a name = "egcdReturn" > < / a >
## egcdReturn : <code>Object</code>
A triple (g, x, y), such that ax + by = g = gcd(a, b).
**Kind**: global typedef
**Properties**
| Name | Type |
| --- | --- |
| g | < code > bigint< / code > |
| x | < code > bigint< / code > |
| y | < code > bigint< / code > |
* * *