2020-04-06 11:17:22 +00:00
[![JavaScript Style Guide ](https://img.shields.io/badge/code_style-standard-brightgreen.svg )](https://standardjs.com)
2019-04-23 09:33:48 +00:00
# bigint-crypto-utils
2019-04-19 07:42:28 +00:00
2020-04-06 11:34:03 +00:00
Utils for working with cryptography using native JS ([ES-2020](https://tc39.es/ecma262/#sec-bigint-objects)) implementation of BigInt. It includes some extra functions to work with modular arithmetic along with secure random numbers and a fast strong probable prime generator/tester (parallelized multi-threaded Miller-Rabin primality test). It can be used by any [Web Browser or webview supporting BigInt ](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility ) and with Node.js (>=10.4.0). In the latter case, for multi-threaded primality tests, you should use Node.js v11 or newer or enable at runtime with `node --experimental-worker` with Node.js version >= 10.5.0 and < 11.
2019-04-19 07:42:28 +00:00
2020-02-27 20:51:48 +00:00
> The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html).
2019-04-19 07:42:28 +00:00
## Installation
2020-02-27 20:51:48 +00:00
2019-04-25 15:28:42 +00:00
bigint-crypto-utils is distributed for [web browsers and/or webviews supporting BigInt ](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility ) as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
bigint-crypto-utils can be imported to your project with `npm` :
2020-02-27 20:51:48 +00:00
2019-04-19 07:42:28 +00:00
```bash
2019-04-19 10:04:06 +00:00
npm install bigint-crypto-utils
2019-04-19 07:42:28 +00:00
```
2020-02-27 20:51:48 +00:00
2020-04-07 15:03:30 +00:00
NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.
2019-04-19 07:42:28 +00:00
2020-04-07 15:03:30 +00:00
For web browsers, you can also directly download the [IIFE bundle ](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.js ) or the [ES6 bundle module ](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.mod.js ) from GitHub.
2019-04-19 07:42:28 +00:00
2020-02-27 20:51:48 +00:00
## Usage examples
2020-04-06 12:17:24 +00:00
Import your module as :
- Node.js
```javascript
const bigintCryptoUtils = require('bigint-crypto-utils')
... // your code here
```
2020-04-07 15:03:30 +00:00
- JavaScript native project
2020-04-06 12:17:24 +00:00
```javascript
import * as bigintCryptoUtils from 'bigint-crypto-utils'
... // your code here
```
2020-04-07 15:03:30 +00:00
- JavaScript native browser ES6 mod
2020-04-06 12:17:24 +00:00
```html
< script type = "module" >
import * as bigintCryptoUtils from 'lib/index.browser.bundle.mod.js' // Use you actual path to the broser mod bundle
... // your code here
< / script >
```
2020-04-07 15:03:30 +00:00
- JavaScript native browser IIFE
2020-04-06 12:17:24 +00:00
```html
2020-04-07 15:03:30 +00:00
< script src = "../../lib/index.browser.bundle.js" > < / script > <!-- Use you actual path to the browser bundle -->
2020-04-06 12:17:24 +00:00
< script >
... // your code here
< / script >
2020-04-07 15:03:30 +00:00
```
2020-04-06 12:17:24 +00:00
- TypeScript
```typescript
import * as bigintCryptoUtils from 'bigint-crypto-utils'
... // your code here
```
> BigInt is [ES-2020](https://tc39.es/ecma262/#sec-bigint-objects). In order to use it with TypeScript you should set `lib` (and probably also `target` and `module`) to `esnext` in `tsconfig.json`.
2019-04-19 07:42:28 +00:00
2020-04-07 15:03:30 +00:00
And you could use it like in the following:
2019-04-19 07:42:28 +00:00
```javascript
2019-04-21 07:39:28 +00:00
/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
2019-04-23 09:33:48 +00:00
or the shorter new no-so-linter-friendly syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
2019-04-21 07:39:28 +00:00
*/
2020-04-06 12:17:24 +00:00
const a = BigInt('5')
const b = BigInt('2')
2020-04-07 15:03:30 +00:00
const n = 19n
2019-04-19 07:42:28 +00:00
2020-04-06 12:17:24 +00:00
console.log(bigintCryptoUtils.modPow(a, b, n)) // prints 6
2020-02-27 20:51:48 +00:00
2020-04-07 15:03:30 +00:00
console.log(bigintCryptoUtils.modInv(2n, 5n)) // prints 3
2019-04-19 07:42:28 +00:00
2020-04-06 12:17:24 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))) // prints 2
2019-04-19 07:42:28 +00:00
2020-04-07 15:03:30 +00:00
console.log(bigintCryptoUtils.randBetween(2n ** 256n)) // Prints a cryptographically secure random number between 1 and 2**256 bits.
2019-04-19 07:42:28 +00:00
2020-04-06 12:17:24 +00:00
async function primeTesting () {
// Output of a probable prime of 2048 bits
console.log(await bigintCryptoUtils.prime(2048))
2019-04-19 07:42:28 +00:00
2020-04-06 12:17:24 +00:00
// Testing if a number is a probable prime (Miller-Rabin)
2020-04-07 15:03:30 +00:00
const number = 27n
2020-04-06 12:17:24 +00:00
const isPrime = await bigintCryptoUtils.isProbablyPrime(number)
if (isPrime) {
console.log(`${number} is prime`)
} else {
console.log(`${number} is composite`)
}
}
2019-04-19 07:42:28 +00:00
2020-04-06 12:17:24 +00:00
primeTesting()
2019-04-19 07:42:28 +00:00
```
2020-04-07 15:03:30 +00:00
## API reference documentation
2019-04-19 07:42:28 +00:00
< a name = "abs" > < / a >
2020-04-06 11:17:22 +00:00
### abs(a) ⇒ <code>bigint</code>
2019-04-19 07:42:28 +00:00
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a< 0
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 07:42:28 +00:00
**Returns**: < code > bigint< / code > - the absolute value of a
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
2019-04-29 10:34:20 +00:00
< a name = "bitLength" > < / a >
2020-04-06 11:17:22 +00:00
### bitLength(a) ⇒ <code>number</code>
2019-04-29 10:34:20 +00:00
Returns the bitlength of a number
**Kind**: global function
**Returns**: < code > number< / code > - - the bit length
| Param | Type |
| --- | --- |
2019-05-04 16:29:09 +00:00
| a | < code > number</ code > \| < code > bigint</ code > |
2019-04-29 10:34:20 +00:00
2019-04-19 10:04:06 +00:00
< a name = "eGcd" > < / a >
2019-04-19 07:42:28 +00:00
2020-04-06 11:17:22 +00:00
### eGcd(a, b) ⇒ [<code>egcdReturn</code>](#egcdReturn)
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
2019-04-19 10:04:06 +00:00
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-05-09 07:39:12 +00:00
**Returns**: [<code>egcdReturn</code> ](#egcdReturn ) - A triple (g, x, y), such that ax + by = g = gcd(a, b).
2019-04-19 07:42:28 +00:00
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
| b | < code > number</ code > \| < code > bigint</ code > |
2019-04-19 10:04:06 +00:00
< a name = "gcd" > < / a >
2019-04-19 07:42:28 +00:00
2020-04-06 11:17:22 +00:00
### gcd(a, b) ⇒ <code>bigint</code>
2019-04-19 10:04:06 +00:00
Greatest-common divisor of two integers based on the iterative binary algorithm.
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: < code > bigint< / code > - The greatest common divisor of a and b
2019-04-19 07:42:28 +00:00
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
| b | < code > number</ code > \| < code > bigint</ code > |
2019-04-19 10:04:06 +00:00
< a name = "lcm" > < / a >
2019-04-19 07:42:28 +00:00
2020-04-06 11:17:22 +00:00
### lcm(a, b) ⇒ <code>bigint</code>
2019-04-19 10:04:06 +00:00
The least common multiple computed as abs(a*b)/gcd(a,b)
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: < code > bigint< / code > - The least common multiple of a and b
2019-04-19 07:42:28 +00:00
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
2019-07-20 08:45:02 +00:00
| b | < code > number</ code > \| < code > bigint</ code > |
< a name = "max" > < / a >
2020-04-06 11:17:22 +00:00
### max(a, b) ⇒ <code>bigint</code>
2019-07-20 08:45:02 +00:00
Maximum. max(a,b)==a if a>=b. max(a,b)==b if a< =b
**Kind**: global function
**Returns**: < code > bigint< / code > - maximum of numbers a and b
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
| b | < code > number</ code > \| < code > bigint</ code > |
< a name = "min" > < / a >
2020-04-06 11:17:22 +00:00
### min(a, b) ⇒ <code>bigint</code>
2019-07-20 08:45:02 +00:00
Minimum. min(a,b)==b if a>=b. min(a,b)==a if a< =b
**Kind**: global function
**Returns**: < code > bigint< / code > - minimum of numbers a and b
| Param | Type |
| --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > |
2019-04-19 07:42:28 +00:00
| b | < code > number</ code > \| < code > bigint</ code > |
< a name = "modInv" > < / a >
2020-04-06 11:17:22 +00:00
### modInv(a, n) ⇒ <code>bigint</code>
2019-04-19 07:42:28 +00:00
Modular inverse.
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-05-09 07:39:12 +00:00
**Returns**: < code > bigint< / code > - the inverse modulo n or NaN if it does not exist
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
| a | < code > number</ code > \| < code > bigint</ code > | The number to find an inverse for |
| n | < code > number</ code > \| < code > bigint</ code > | The modulo |
< a name = "modPow" > < / a >
2020-04-06 11:17:22 +00:00
### modPow(b, e, n) ⇒ <code>bigint</code>
2019-05-29 15:45:36 +00:00
Modular exponentiation b**e mod n. Currently using the right-to-left binary method
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-05-29 15:44:18 +00:00
**Returns**: < code > bigint< / code > - b**e mod n
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-05-29 15:44:18 +00:00
| b | < code > number</ code > \| < code > bigint</ code > | base |
| e | < code > number</ code > \| < code > bigint</ code > | exponent |
2019-04-19 07:42:28 +00:00
| n | < code > number</ code > \| < code > bigint</ code > | modulo |
2019-04-19 10:04:06 +00:00
< a name = "toZn" > < / a >
2019-04-19 07:42:28 +00:00
2020-04-06 11:17:22 +00:00
### toZn(a, n) ⇒ <code>bigint</code>
2019-04-19 10:04:06 +00:00
Finds the smallest positive element that is congruent to a in modulo n
2019-04-19 07:42:28 +00:00
2019-04-19 14:40:11 +00:00
**Kind**: global function
2019-04-19 10:04:06 +00:00
**Returns**: < code > bigint< / code > - The smallest positive representation of a in modulo n
2019-04-19 07:42:28 +00:00
| Param | Type | Description |
| --- | --- | --- |
2019-04-19 10:04:06 +00:00
| a | < code > number</ code > \| < code > bigint</ code > | An integer |
| n | < code > number</ code > \| < code > bigint</ code > | The modulo |
2019-04-19 07:42:28 +00:00
< a name = "egcdReturn" > < / a >
2020-04-06 11:17:22 +00:00
### egcdReturn : <code>Object</code>
2019-04-19 07:42:28 +00:00
A triple (g, x, y), such that ax + by = g = gcd(a, b).
**Kind**: global typedef
**Properties**
| Name | Type |
| --- | --- |
| g | < code > bigint< / code > |
| x | < code > bigint< / code > |
| y | < code > bigint< / code > |