This repository has been archived on 2023-01-14. You can view files and clone it, but cannot push or open issues or pull requests.
libsiaweb/dist/blake2b.js

186 lines
6.5 KiB
JavaScript

// Blake2B, adapted from the reference implementation in RFC7693
// Ported to Javascript by DC - https://github.com/dcposch
// Then ported to typescript by https://github.com/DavidVorick
// 64-bit unsigned addition
// Sets v[a,a+1] += v[b,b+1]
// v should be a Uint32Array
function ADD64AA(v, a, b) {
const o0 = v[a] + v[b];
let o1 = v[a + 1] + v[b + 1];
if (o0 >= 0x100000000) {
o1++;
}
v[a] = o0;
v[a + 1] = o1;
}
// 64-bit unsigned addition
// Sets v[a,a+1] += b
// b0 is the low 32 bits of b, b1 represents the high 32 bits
function ADD64AC(v, a, b0, b1) {
let o0 = v[a] + b0;
if (b0 < 0) {
o0 += 0x100000000;
}
let o1 = v[a + 1] + b1;
if (o0 >= 0x100000000) {
o1++;
}
v[a] = o0;
v[a + 1] = o1;
}
// Little-endian byte access
function B2B_GET32(arr, i) {
return arr[i] ^ (arr[i + 1] << 8) ^ (arr[i + 2] << 16) ^ (arr[i + 3] << 24);
}
// G Mixing function
// The ROTRs are inlined for speed
function B2B_G(a, b, c, d, ix, iy, m, v) {
const x0 = m[ix];
const x1 = m[ix + 1];
const y0 = m[iy];
const y1 = m[iy + 1];
ADD64AA(v, a, b); // v[a,a+1] += v[b,b+1] ... in JS we must store a uint64 as two uint32s
ADD64AC(v, a, x0, x1); // v[a, a+1] += x ... x0 is the low 32 bits of x, x1 is the high 32 bits
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated to the right by 32 bits
let xor0 = v[d] ^ v[a];
let xor1 = v[d + 1] ^ v[a + 1];
v[d] = xor1;
v[d + 1] = xor0;
ADD64AA(v, c, d);
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 24 bits
xor0 = v[b] ^ v[c];
xor1 = v[b + 1] ^ v[c + 1];
v[b] = (xor0 >>> 24) ^ (xor1 << 8);
v[b + 1] = (xor1 >>> 24) ^ (xor0 << 8);
ADD64AA(v, a, b);
ADD64AC(v, a, y0, y1);
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated right by 16 bits
xor0 = v[d] ^ v[a];
xor1 = v[d + 1] ^ v[a + 1];
v[d] = (xor0 >>> 16) ^ (xor1 << 16);
v[d + 1] = (xor1 >>> 16) ^ (xor0 << 16);
ADD64AA(v, c, d);
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 63 bits
xor0 = v[b] ^ v[c];
xor1 = v[b + 1] ^ v[c + 1];
v[b] = (xor1 >>> 31) ^ (xor0 << 1);
v[b + 1] = (xor0 >>> 31) ^ (xor1 << 1);
}
// Initialization Vector
const BLAKE2B_IV32 = new Uint32Array([
0xf3bcc908, 0x6a09e667, 0x84caa73b, 0xbb67ae85, 0xfe94f82b, 0x3c6ef372,
0x5f1d36f1, 0xa54ff53a, 0xade682d1, 0x510e527f, 0x2b3e6c1f, 0x9b05688c,
0xfb41bd6b, 0x1f83d9ab, 0x137e2179, 0x5be0cd19,
]);
const SIGMA8 = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 10, 4, 8, 9, 15, 13,
6, 1, 12, 0, 2, 11, 7, 5, 3, 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1,
9, 4, 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8, 9, 0, 5, 7, 2, 4,
10, 15, 14, 1, 11, 12, 6, 8, 3, 13, 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5,
15, 14, 1, 9, 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11, 13, 11, 7,
14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10, 6, 15, 14, 9, 11, 3, 0, 8, 12, 2,
13, 7, 1, 4, 10, 5, 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0, 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 10, 4, 8, 9, 15, 13, 6,
1, 12, 0, 2, 11, 7, 5, 3,
];
// These are offsets into a uint64 buffer.
// Multiply them all by 2 to make them offsets into a uint32 buffer,
// because this is Javascript and we don't have uint64s
const SIGMA82 = new Uint8Array(SIGMA8.map(function (x) {
return x * 2;
}));
// Compression function. 'last' flag indicates last block.
// Note we're representing 16 uint64s as 32 uint32s
function blake2bCompress(ctx, last) {
const v = new Uint32Array(32);
const m = new Uint32Array(32);
let i = 0;
// init work variables
for (i = 0; i < 16; i++) {
v[i] = ctx.h[i];
v[i + 16] = BLAKE2B_IV32[i];
}
// low 64 bits of offset
v[24] = v[24] ^ ctx.t;
v[25] = v[25] ^ (ctx.t / 0x100000000);
// high 64 bits not supported, offset may not be higher than 2**53-1
// last block flag set ?
if (last) {
v[28] = ~v[28];
v[29] = ~v[29];
}
// get little-endian words
for (i = 0; i < 32; i++) {
m[i] = B2B_GET32(ctx.b, 4 * i);
}
// twelve rounds of mixing
for (i = 0; i < 12; i++) {
B2B_G(0, 8, 16, 24, SIGMA82[i * 16 + 0], SIGMA82[i * 16 + 1], m, v);
B2B_G(2, 10, 18, 26, SIGMA82[i * 16 + 2], SIGMA82[i * 16 + 3], m, v);
B2B_G(4, 12, 20, 28, SIGMA82[i * 16 + 4], SIGMA82[i * 16 + 5], m, v);
B2B_G(6, 14, 22, 30, SIGMA82[i * 16 + 6], SIGMA82[i * 16 + 7], m, v);
B2B_G(0, 10, 20, 30, SIGMA82[i * 16 + 8], SIGMA82[i * 16 + 9], m, v);
B2B_G(2, 12, 22, 24, SIGMA82[i * 16 + 10], SIGMA82[i * 16 + 11], m, v);
B2B_G(4, 14, 16, 26, SIGMA82[i * 16 + 12], SIGMA82[i * 16 + 13], m, v);
B2B_G(6, 8, 18, 28, SIGMA82[i * 16 + 14], SIGMA82[i * 16 + 15], m, v);
}
for (i = 0; i < 16; i++) {
ctx.h[i] = ctx.h[i] ^ v[i] ^ v[i + 16];
}
}
// Creates a BLAKE2b hashing context
// Requires an output length between 1 and 64 bytes
function blake2bInit() {
// state, 'param block'
const ctx = {
b: new Uint8Array(128),
h: new Uint32Array(16),
t: 0,
c: 0,
outlen: 32, // output length in bytes
};
// initialize hash state
for (let i = 0; i < 16; i++) {
ctx.h[i] = BLAKE2B_IV32[i];
}
ctx.h[0] ^= 0x01010000 ^ 32;
return ctx;
}
// Updates a BLAKE2b streaming hash
// Requires hash context and Uint8Array (byte array)
function blake2bUpdate(ctx, input) {
for (let i = 0; i < input.length; i++) {
if (ctx.c === 128) {
// buffer full ?
ctx.t += ctx.c; // add counters
blake2bCompress(ctx, false); // compress (not last)
ctx.c = 0; // counter to zero
}
ctx.b[ctx.c++] = input[i];
}
}
// Completes a BLAKE2b streaming hash
// Returns a Uint8Array containing the message digest
function blake2bFinal(ctx) {
ctx.t += ctx.c; // mark last block offset
while (ctx.c < 128) {
// fill up with zeros
ctx.b[ctx.c++] = 0;
}
blake2bCompress(ctx, true); // final block flag = 1
// little endian convert and store
const out = new Uint8Array(ctx.outlen);
for (let i = 0; i < ctx.outlen; i++) {
out[i] = ctx.h[i >> 2] >> (8 * (i & 3));
}
return out;
}
const BLAKE2B_HASH_SIZE = 32;
// Computes the blake2b hash of the input. Returns 32 bytes.
function blake2b(input) {
const ctx = blake2bInit();
blake2bUpdate(ctx, input);
return blake2bFinal(ctx);
}
export { BLAKE2B_HASH_SIZE, blake2b };