helios/execution/src/execution.rs

329 lines
10 KiB
Rust

use std::collections::{BTreeMap, HashMap};
use std::str::FromStr;
use ethers::abi::AbiEncode;
use ethers::prelude::{Address, U256};
use ethers::types::{Filter, Log, Transaction, TransactionReceipt, H256};
use ethers::utils::keccak256;
use ethers::utils::rlp::{encode, Encodable, RlpStream};
use eyre::Result;
use common::utils::hex_str_to_bytes;
use consensus::types::ExecutionPayload;
use futures::future::join_all;
use revm::KECCAK_EMPTY;
use triehash_ethereum::ordered_trie_root;
use crate::errors::ExecutionError;
use crate::types::Transactions;
use super::proof::{encode_account, verify_proof};
use super::rpc::ExecutionRpc;
use super::types::{Account, ExecutionBlock};
// We currently limit the max number of logs to fetch,
// to avoid blocking the client for too long.
const MAX_SUPPORTED_LOGS_NUMBER: usize = 5;
#[derive(Clone)]
pub struct ExecutionClient<R: ExecutionRpc> {
pub rpc: R,
}
impl<R: ExecutionRpc> ExecutionClient<R> {
pub fn new(rpc: &str) -> Result<Self> {
let rpc = ExecutionRpc::new(rpc)?;
Ok(ExecutionClient { rpc })
}
pub async fn get_account(
&self,
address: &Address,
slots: Option<&[H256]>,
payload: &ExecutionPayload,
) -> Result<Account> {
let slots = slots.unwrap_or(&[]);
let proof = self
.rpc
.get_proof(address, slots, payload.block_number)
.await?;
let account_path = keccak256(address.as_bytes()).to_vec();
let account_encoded = encode_account(&proof);
let is_valid = verify_proof(
&proof.account_proof,
&payload.state_root,
&account_path,
&account_encoded,
);
if !is_valid {
return Err(ExecutionError::InvalidAccountProof(*address).into());
}
let mut slot_map = HashMap::new();
for storage_proof in proof.storage_proof {
let key = hex_str_to_bytes(&storage_proof.key.encode_hex())?;
let value = encode(&storage_proof.value).to_vec();
let key_hash = keccak256(key);
let is_valid = verify_proof(
&storage_proof.proof,
proof.storage_hash.as_bytes(),
&key_hash.to_vec(),
&value,
);
if !is_valid {
return Err(
ExecutionError::InvalidStorageProof(*address, storage_proof.key).into(),
);
}
slot_map.insert(storage_proof.key, storage_proof.value);
}
let code = if proof.code_hash == KECCAK_EMPTY {
Vec::new()
} else {
let code = self.rpc.get_code(address, payload.block_number).await?;
let code_hash = keccak256(&code).into();
if proof.code_hash != code_hash {
return Err(ExecutionError::CodeHashMismatch(
*address,
code_hash.to_string(),
proof.code_hash.to_string(),
)
.into());
}
code
};
Ok(Account {
balance: proof.balance,
nonce: proof.nonce.as_u64(),
code,
code_hash: proof.code_hash,
storage_hash: proof.storage_hash,
slots: slot_map,
})
}
pub async fn send_raw_transaction(&self, bytes: &[u8]) -> Result<H256> {
self.rpc.send_raw_transaction(bytes).await
}
pub async fn get_block(
&self,
payload: &ExecutionPayload,
full_tx: bool,
) -> Result<ExecutionBlock> {
let empty_nonce = "0x0000000000000000".to_string();
let empty_uncle_hash = "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347";
let tx_hashes = payload
.transactions
.iter()
.map(|tx| H256::from_slice(&keccak256(tx)))
.collect::<Vec<H256>>();
let txs = if full_tx {
let txs_fut = tx_hashes.iter().map(|hash| async move {
let mut payloads = BTreeMap::new();
payloads.insert(payload.block_number, payload.clone());
let tx = self
.get_transaction(hash, &payloads)
.await?
.ok_or(eyre::eyre!("not reachable"))?;
Ok(tx)
});
let txs = join_all(txs_fut)
.await
.into_iter()
.collect::<Result<Vec<_>>>()?;
Transactions::Full(txs)
} else {
Transactions::Hashes(tx_hashes)
};
Ok(ExecutionBlock {
number: payload.block_number,
base_fee_per_gas: U256::from_little_endian(&payload.base_fee_per_gas.to_bytes_le()),
difficulty: U256::from(0),
extra_data: payload.extra_data.to_vec(),
gas_limit: payload.gas_limit,
gas_used: payload.gas_used,
hash: H256::from_slice(&payload.block_hash),
logs_bloom: payload.logs_bloom.to_vec(),
miner: Address::from_slice(&payload.fee_recipient),
parent_hash: H256::from_slice(&payload.parent_hash),
receipts_root: H256::from_slice(&payload.receipts_root),
state_root: H256::from_slice(&payload.state_root),
timestamp: payload.timestamp,
total_difficulty: 0,
transactions: txs,
mix_hash: H256::from_slice(&payload.prev_randao),
nonce: empty_nonce,
sha3_uncles: H256::from_str(empty_uncle_hash)?,
size: 0,
transactions_root: H256::default(),
uncles: vec![],
})
}
pub async fn get_transaction_receipt(
&self,
tx_hash: &H256,
payloads: &BTreeMap<u64, ExecutionPayload>,
) -> Result<Option<TransactionReceipt>> {
let receipt = self.rpc.get_transaction_receipt(tx_hash).await?;
if receipt.is_none() {
return Ok(None);
}
let receipt = receipt.unwrap();
let block_number = receipt.block_number.unwrap().as_u64();
let payload = payloads.get(&block_number);
if payload.is_none() {
return Ok(None);
}
let payload = payload.unwrap();
let tx_hashes = payload
.transactions
.iter()
.map(|tx| H256::from_slice(&keccak256(tx)))
.collect::<Vec<H256>>();
let receipts_fut = tx_hashes.iter().map(|hash| async move {
let receipt = self.rpc.get_transaction_receipt(hash).await;
receipt?.ok_or(eyre::eyre!("not reachable"))
});
let receipts = join_all(receipts_fut).await;
let receipts = receipts.into_iter().collect::<Result<Vec<_>>>()?;
let receipts_encoded: Vec<Vec<u8>> = receipts.iter().map(encode_receipt).collect();
let expected_receipt_root = ordered_trie_root(receipts_encoded);
let expected_receipt_root = H256::from_slice(&expected_receipt_root.to_fixed_bytes());
let payload_receipt_root = H256::from_slice(&payload.receipts_root);
if expected_receipt_root != payload_receipt_root || !receipts.contains(&receipt) {
return Err(ExecutionError::ReceiptRootMismatch(tx_hash.to_string()).into());
}
Ok(Some(receipt))
}
pub async fn get_transaction(
&self,
hash: &H256,
payloads: &BTreeMap<u64, ExecutionPayload>,
) -> Result<Option<Transaction>> {
let tx = self.rpc.get_transaction(hash).await?;
if tx.is_none() {
return Ok(None);
}
let tx = tx.unwrap();
let block_number = tx.block_number;
if block_number.is_none() {
return Ok(None);
}
let block_number = block_number.unwrap().as_u64();
let payload = payloads.get(&block_number);
if payload.is_none() {
return Ok(None);
}
let payload = payload.unwrap();
let tx_encoded = tx.rlp().to_vec();
let txs_encoded = payload
.transactions
.iter()
.map(|tx| tx.to_vec())
.collect::<Vec<_>>();
if !txs_encoded.contains(&tx_encoded) {
return Err(ExecutionError::MissingTransaction(hash.to_string()).into());
}
Ok(Some(tx))
}
pub async fn get_logs(
&self,
filter: &Filter,
payloads: &BTreeMap<u64, ExecutionPayload>,
) -> Result<Vec<Log>> {
let logs = self.rpc.get_logs(filter).await?;
if logs.len() > MAX_SUPPORTED_LOGS_NUMBER {
return Err(
ExecutionError::TooManyLogsToProve(logs.len(), MAX_SUPPORTED_LOGS_NUMBER).into(),
);
}
for (_pos, log) in logs.iter().enumerate() {
// For every log
// Get the hash of the tx that generated it
let tx_hash = log
.transaction_hash
.ok_or(eyre::eyre!("tx hash not found in log"))?;
// Get its proven receipt
let receipt = self
.get_transaction_receipt(&tx_hash, payloads)
.await?
.ok_or(ExecutionError::NoReceiptForTransaction(tx_hash.to_string()))?;
// Check if the receipt contains the desired log
// Encoding logs for comparison
let receipt_logs_encoded = receipt
.logs
.iter()
.map(|log| log.rlp_bytes())
.collect::<Vec<_>>();
let log_encoded = log.rlp_bytes();
if !receipt_logs_encoded.contains(&log_encoded) {
return Err(ExecutionError::MissingLog(
tx_hash.to_string(),
log.log_index.unwrap(),
)
.into());
}
}
Ok(logs)
}
}
fn encode_receipt(receipt: &TransactionReceipt) -> Vec<u8> {
let mut stream = RlpStream::new();
stream.begin_list(4);
stream.append(&receipt.status.unwrap());
stream.append(&receipt.cumulative_gas_used);
stream.append(&receipt.logs_bloom);
stream.append_list(&receipt.logs);
let legacy_receipt_encoded = stream.out();
let tx_type = receipt.transaction_type.unwrap().as_u64();
match tx_type {
0 => legacy_receipt_encoded.to_vec(),
_ => [&tx_type.to_be_bytes()[7..8], &legacy_receipt_encoded].concat(),
}
}