ethers-rs/ethers-providers/src/provider.rs

1492 lines
53 KiB
Rust

use crate::{
ens, maybe,
pubsub::{PubsubClient, SubscriptionStream},
stream::{FilterWatcher, DEFAULT_POLL_INTERVAL},
FromErr, Http as HttpProvider, JsonRpcClient, JsonRpcClientWrapper, MockProvider,
PendingTransaction, QuorumProvider,
};
#[cfg(feature = "celo")]
use crate::CeloMiddleware;
use crate::Middleware;
use async_trait::async_trait;
use ethers_core::{
abi::{self, Detokenize, ParamType},
types::{
transaction::{eip2718::TypedTransaction, eip2930::AccessListWithGasUsed},
Address, Block, BlockId, BlockNumber, BlockTrace, Bytes, EIP1186ProofResponse, FeeHistory,
Filter, Log, NameOrAddress, Selector, Signature, Trace, TraceFilter, TraceType,
Transaction, TransactionReceipt, TxHash, TxpoolContent, TxpoolInspect, TxpoolStatus, H256,
U256, U64,
},
utils,
};
use hex::FromHex;
use serde::{de::DeserializeOwned, Serialize};
use thiserror::Error;
use url::{ParseError, Url};
use futures_util::lock::Mutex;
use std::{convert::TryFrom, fmt::Debug, str::FromStr, sync::Arc, time::Duration};
use tracing::trace;
use tracing_futures::Instrument;
#[derive(Copy, Clone)]
pub enum NodeClient {
Geth,
Erigon,
OpenEthereum,
Nethermind,
Besu,
}
impl FromStr for NodeClient {
type Err = ProviderError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s.split('/').next().unwrap().to_lowercase().as_str() {
"geth" => Ok(NodeClient::Geth),
"erigon" => Ok(NodeClient::Erigon),
"openethereum" => Ok(NodeClient::OpenEthereum),
"nethermind" => Ok(NodeClient::Nethermind),
"besu" => Ok(NodeClient::Besu),
_ => Err(ProviderError::UnsupportedNodeClient),
}
}
}
/// An abstract provider for interacting with the [Ethereum JSON RPC
/// API](https://github.com/ethereum/wiki/wiki/JSON-RPC). Must be instantiated
/// with a data transport which implements the [`JsonRpcClient`](trait@crate::JsonRpcClient) trait
/// (e.g. [HTTP](crate::Http), Websockets etc.)
///
/// # Example
///
/// ```no_run
/// # async fn foo() -> Result<(), Box<dyn std::error::Error>> {
/// use ethers_providers::{Middleware, Provider, Http};
/// use std::convert::TryFrom;
///
/// let provider = Provider::<Http>::try_from(
/// "https://mainnet.infura.io/v3/c60b0bb42f8a4c6481ecd229eddaca27"
/// ).expect("could not instantiate HTTP Provider");
///
/// let block = provider.get_block(100u64).await?;
/// println!("Got block: {}", serde_json::to_string(&block)?);
/// # Ok(())
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Provider<P> {
inner: P,
ens: Option<Address>,
interval: Option<Duration>,
from: Option<Address>,
/// Node client hasn't been checked yet = `None`
/// Unsupported node client = `Some(None)`
/// Supported node client = `Some(Some(NodeClient))`
_node_client: Arc<Mutex<Option<NodeClient>>>,
}
impl<P> AsRef<P> for Provider<P> {
fn as_ref(&self) -> &P {
&self.inner
}
}
impl FromErr<ProviderError> for ProviderError {
fn from(src: ProviderError) -> Self {
src
}
}
#[derive(Debug, Error)]
/// An error thrown when making a call to the provider
pub enum ProviderError {
/// An internal error in the JSON RPC Client
#[error(transparent)]
JsonRpcClientError(#[from] Box<dyn std::error::Error + Send + Sync>),
/// An error during ENS name resolution
#[error("ens name not found: {0}")]
EnsError(String),
#[error(transparent)]
SerdeJson(#[from] serde_json::Error),
#[error(transparent)]
HexError(#[from] hex::FromHexError),
#[error("custom error: {0}")]
CustomError(String),
#[error("unsupported RPC")]
UnsupportedRPC,
#[error("unsupported node client")]
UnsupportedNodeClient,
#[error("Attempted to sign a transaction with no available signer. Hint: did you mean to use a SignerMiddleware?")]
SignerUnavailable,
}
/// Types of filters supported by the JSON-RPC.
#[derive(Clone, Debug)]
pub enum FilterKind<'a> {
/// `eth_newBlockFilter`
Logs(&'a Filter),
/// `eth_newBlockFilter` filter
NewBlocks,
/// `eth_newPendingTransactionFilter` filter
PendingTransactions,
}
// JSON RPC bindings
impl<P: JsonRpcClient> Provider<P> {
/// Instantiate a new provider with a backend.
pub fn new(provider: P) -> Self {
Self {
inner: provider,
ens: None,
interval: None,
from: None,
_node_client: Arc::new(Mutex::new(None)),
}
}
/// Returns the type of node we're connected to, while also caching the value for use
/// in other node-specific API calls, such as the get_block_receipts call.
pub async fn node_client(&self) -> Result<NodeClient, ProviderError> {
let mut node_client = self._node_client.lock().await;
if let Some(node_client) = *node_client {
Ok(node_client)
} else {
let client_version = self.client_version().await?;
let client_version = match client_version.parse::<NodeClient>() {
Ok(res) => res,
Err(_) => return Err(ProviderError::UnsupportedNodeClient),
};
*node_client = Some(client_version);
Ok(client_version)
}
}
#[must_use]
pub fn with_sender(mut self, address: impl Into<Address>) -> Self {
self.from = Some(address.into());
self
}
async fn request<T, R>(&self, method: &str, params: T) -> Result<R, ProviderError>
where
T: Debug + Serialize + Send + Sync,
R: Serialize + DeserializeOwned + Debug,
{
let span =
tracing::trace_span!("rpc", method = method, params = ?serde_json::to_string(&params)?);
// https://docs.rs/tracing/0.1.22/tracing/span/struct.Span.html#in-asynchronous-code
let res = async move {
trace!("tx");
let res: R = self.inner.request(method, params).await.map_err(Into::into)?;
trace!(rx = ?serde_json::to_string(&res)?);
Ok::<_, ProviderError>(res)
}
.instrument(span)
.await?;
Ok(res)
}
async fn get_block_gen<Tx: Default + Serialize + DeserializeOwned + Debug>(
&self,
id: BlockId,
include_txs: bool,
) -> Result<Option<Block<Tx>>, ProviderError> {
let include_txs = utils::serialize(&include_txs);
Ok(match id {
BlockId::Hash(hash) => {
let hash = utils::serialize(&hash);
self.request("eth_getBlockByHash", [hash, include_txs]).await?
}
BlockId::Number(num) => {
let num = utils::serialize(&num);
self.request("eth_getBlockByNumber", [num, include_txs]).await?
}
})
}
}
#[cfg(feature = "celo")]
#[cfg_attr(target_arch = "wasm32", async_trait(?Send))]
#[cfg_attr(not(target_arch = "wasm32"), async_trait)]
impl<P: JsonRpcClient> CeloMiddleware for Provider<P> {
async fn get_validators_bls_public_keys<T: Into<BlockId> + Send + Sync>(
&self,
block_id: T,
) -> Result<Vec<String>, ProviderError> {
let block_id = utils::serialize(&block_id.into());
self.request("istanbul_getValidatorsBLSPublicKeys", [block_id]).await
}
}
#[cfg_attr(target_arch = "wasm32", async_trait(?Send))]
#[cfg_attr(not(target_arch = "wasm32"), async_trait)]
impl<P: JsonRpcClient> Middleware for Provider<P> {
type Error = ProviderError;
type Provider = P;
type Inner = Self;
fn inner(&self) -> &Self::Inner {
unreachable!("There is no inner provider here")
}
fn provider(&self) -> &Provider<Self::Provider> {
self
}
fn default_sender(&self) -> Option<Address> {
self.from
}
////// Blockchain Status
//
// Functions for querying the state of the blockchain
/// Returns the current client version using the `web3_clientVersion` RPC.
async fn client_version(&self) -> Result<String, Self::Error> {
self.request("web3_clientVersion", ()).await
}
async fn fill_transaction(
&self,
tx: &mut TypedTransaction,
block: Option<BlockId>,
) -> Result<(), Self::Error> {
if let Some(default_sender) = self.default_sender() {
if tx.from().is_none() {
tx.set_from(default_sender);
}
}
// TODO: Can we poll the futures below at the same time?
// Access List + Name resolution and then Gas price + Gas
// set the ENS name
if let Some(NameOrAddress::Name(ref ens_name)) = tx.to() {
let addr = self.resolve_name(ens_name).await?;
tx.set_to(addr);
}
// estimate the gas without the access list
let gas = maybe(tx.gas().cloned(), self.estimate_gas(tx)).await?;
let mut al_used = false;
// set the access lists
if let Some(access_list) = tx.access_list() {
if access_list.0.is_empty() {
if let Ok(al_with_gas) = self.create_access_list(tx, block).await {
// only set the access list if the used gas is less than the
// normally estimated gas
if al_with_gas.gas_used < gas {
tx.set_access_list(al_with_gas.access_list);
tx.set_gas(al_with_gas.gas_used);
al_used = true;
}
}
}
}
if !al_used {
tx.set_gas(gas);
}
match tx {
TypedTransaction::Eip2930(_) | TypedTransaction::Legacy(_) => {
let gas_price = maybe(tx.gas_price(), self.get_gas_price()).await?;
tx.set_gas_price(gas_price);
}
TypedTransaction::Eip1559(ref mut inner) => {
if inner.max_fee_per_gas.is_none() || inner.max_priority_fee_per_gas.is_none() {
let (max_fee_per_gas, max_priority_fee_per_gas) =
self.estimate_eip1559_fees(None).await?;
inner.max_fee_per_gas = Some(max_fee_per_gas);
inner.max_priority_fee_per_gas = Some(max_priority_fee_per_gas);
};
}
}
Ok(())
}
/// Gets the latest block number via the `eth_BlockNumber` API
async fn get_block_number(&self) -> Result<U64, ProviderError> {
self.request("eth_blockNumber", ()).await
}
/// Gets the block at `block_hash_or_number` (transaction hashes only)
async fn get_block<T: Into<BlockId> + Send + Sync>(
&self,
block_hash_or_number: T,
) -> Result<Option<Block<TxHash>>, Self::Error> {
self.get_block_gen(block_hash_or_number.into(), false).await
}
/// Gets the block at `block_hash_or_number` (full transactions included)
async fn get_block_with_txs<T: Into<BlockId> + Send + Sync>(
&self,
block_hash_or_number: T,
) -> Result<Option<Block<Transaction>>, ProviderError> {
self.get_block_gen(block_hash_or_number.into(), true).await
}
/// Gets the block uncle count at `block_hash_or_number`
async fn get_uncle_count<T: Into<BlockId> + Send + Sync>(
&self,
block_hash_or_number: T,
) -> Result<U256, Self::Error> {
let id = block_hash_or_number.into();
Ok(match id {
BlockId::Hash(hash) => {
let hash = utils::serialize(&hash);
self.request("eth_getUncleCountByBlockHash", [hash]).await?
}
BlockId::Number(num) => {
let num = utils::serialize(&num);
self.request("eth_getUncleCountByBlockNumber", [num]).await?
}
})
}
/// Gets the block uncle at `block_hash_or_number` and `idx`
async fn get_uncle<T: Into<BlockId> + Send + Sync>(
&self,
block_hash_or_number: T,
idx: U64,
) -> Result<Option<Block<H256>>, ProviderError> {
let blk_id = block_hash_or_number.into();
let idx = utils::serialize(&idx);
Ok(match blk_id {
BlockId::Hash(hash) => {
let hash = utils::serialize(&hash);
self.request("eth_getUncleByBlockHashAndIndex", [hash, idx]).await?
}
BlockId::Number(num) => {
let num = utils::serialize(&num);
self.request("eth_getUncleByBlockNumberAndIndex", [num, idx]).await?
}
})
}
/// Gets the transaction with `transaction_hash`
async fn get_transaction<T: Send + Sync + Into<TxHash>>(
&self,
transaction_hash: T,
) -> Result<Option<Transaction>, ProviderError> {
let hash = transaction_hash.into();
self.request("eth_getTransactionByHash", [hash]).await
}
/// Gets the transaction receipt with `transaction_hash`
async fn get_transaction_receipt<T: Send + Sync + Into<TxHash>>(
&self,
transaction_hash: T,
) -> Result<Option<TransactionReceipt>, ProviderError> {
let hash = transaction_hash.into();
self.request("eth_getTransactionReceipt", [hash]).await
}
/// Returns all receipts for a block.
///
/// Note that this uses the `eth_getBlockReceipts` RPC, which is
/// non-standard and currently supported by Erigon.
async fn get_block_receipts<T: Into<BlockNumber> + Send + Sync>(
&self,
block: T,
) -> Result<Vec<TransactionReceipt>, Self::Error> {
self.request("eth_getBlockReceipts", [block.into()]).await
}
/// Returns all receipts for that block. Must be done on a parity node.
async fn parity_block_receipts<T: Into<BlockNumber> + Send + Sync>(
&self,
block: T,
) -> Result<Vec<TransactionReceipt>, Self::Error> {
self.request("parity_getBlockReceipts", vec![block.into()]).await
}
/// Gets the current gas price as estimated by the node
async fn get_gas_price(&self) -> Result<U256, ProviderError> {
self.request("eth_gasPrice", ()).await
}
/// Gets a heuristic recommendation of max fee per gas and max priority fee per gas for
/// EIP-1559 compatible transactions.
async fn estimate_eip1559_fees(
&self,
estimator: Option<fn(U256, Vec<Vec<U256>>) -> (U256, U256)>,
) -> Result<(U256, U256), Self::Error> {
let base_fee_per_gas = self
.get_block(BlockNumber::Latest)
.await?
.ok_or_else(|| ProviderError::CustomError("Latest block not found".into()))?
.base_fee_per_gas
.ok_or_else(|| ProviderError::CustomError("EIP-1559 not activated".into()))?;
let fee_history = self
.fee_history(
utils::EIP1559_FEE_ESTIMATION_PAST_BLOCKS,
BlockNumber::Latest,
&[utils::EIP1559_FEE_ESTIMATION_REWARD_PERCENTILE],
)
.await?;
// use the provided fee estimator function, or fallback to the default implementation.
let (max_fee_per_gas, max_priority_fee_per_gas) = if let Some(es) = estimator {
es(base_fee_per_gas, fee_history.reward)
} else {
utils::eip1559_default_estimator(base_fee_per_gas, fee_history.reward)
};
Ok((max_fee_per_gas, max_priority_fee_per_gas))
}
/// Gets the accounts on the node
async fn get_accounts(&self) -> Result<Vec<Address>, ProviderError> {
self.request("eth_accounts", ()).await
}
/// Returns the nonce of the address
async fn get_transaction_count<T: Into<NameOrAddress> + Send + Sync>(
&self,
from: T,
block: Option<BlockId>,
) -> Result<U256, ProviderError> {
let from = match from.into() {
NameOrAddress::Name(ens_name) => self.resolve_name(&ens_name).await?,
NameOrAddress::Address(addr) => addr,
};
let from = utils::serialize(&from);
let block = utils::serialize(&block.unwrap_or_else(|| BlockNumber::Latest.into()));
self.request("eth_getTransactionCount", [from, block]).await
}
/// Returns the account's balance
async fn get_balance<T: Into<NameOrAddress> + Send + Sync>(
&self,
from: T,
block: Option<BlockId>,
) -> Result<U256, ProviderError> {
let from = match from.into() {
NameOrAddress::Name(ens_name) => self.resolve_name(&ens_name).await?,
NameOrAddress::Address(addr) => addr,
};
let from = utils::serialize(&from);
let block = utils::serialize(&block.unwrap_or_else(|| BlockNumber::Latest.into()));
self.request("eth_getBalance", [from, block]).await
}
/// Returns the currently configured chain id, a value used in replay-protected
/// transaction signing as introduced by EIP-155.
async fn get_chainid(&self) -> Result<U256, ProviderError> {
self.request("eth_chainId", ()).await
}
/// Returns the network version.
async fn get_net_version(&self) -> Result<U64, ProviderError> {
self.request("net_version", ()).await
}
////// Contract Execution
//
// These are relatively low-level calls. The Contracts API should usually be used instead.
/// Sends the read-only (constant) transaction to a single Ethereum node and return the result
/// (as bytes) of executing it. This is free, since it does not change any state on the
/// blockchain.
async fn call(
&self,
tx: &TypedTransaction,
block: Option<BlockId>,
) -> Result<Bytes, ProviderError> {
let tx = utils::serialize(tx);
let block = utils::serialize(&block.unwrap_or_else(|| BlockNumber::Latest.into()));
self.request("eth_call", [tx, block]).await
}
/// Sends a transaction to a single Ethereum node and return the estimated amount of gas
/// required (as a U256) to send it This is free, but only an estimate. Providing too little
/// gas will result in a transaction being rejected (while still consuming all provided
/// gas).
async fn estimate_gas(&self, tx: &TypedTransaction) -> Result<U256, ProviderError> {
self.request("eth_estimateGas", [tx]).await
}
async fn create_access_list(
&self,
tx: &TypedTransaction,
block: Option<BlockId>,
) -> Result<AccessListWithGasUsed, ProviderError> {
let tx = utils::serialize(tx);
let block = utils::serialize(&block.unwrap_or_else(|| BlockNumber::Latest.into()));
self.request("eth_createAccessList", [tx, block]).await
}
/// Sends the transaction to the entire Ethereum network and returns the transaction's hash
/// This will consume gas from the account that signed the transaction.
async fn send_transaction<T: Into<TypedTransaction> + Send + Sync>(
&self,
tx: T,
block: Option<BlockId>,
) -> Result<PendingTransaction<'_, P>, ProviderError> {
let mut tx = tx.into();
self.fill_transaction(&mut tx, block).await?;
let tx_hash = self.request("eth_sendTransaction", [tx]).await?;
Ok(PendingTransaction::new(tx_hash, self).interval(self.get_interval()))
}
/// Send the raw RLP encoded transaction to the entire Ethereum network and returns the
/// transaction's hash This will consume gas from the account that signed the transaction.
async fn send_raw_transaction<'a>(
&'a self,
tx: Bytes,
) -> Result<PendingTransaction<'a, P>, ProviderError> {
let rlp = utils::serialize(&tx);
let tx_hash = self.request("eth_sendRawTransaction", [rlp]).await?;
Ok(PendingTransaction::new(tx_hash, self).interval(self.get_interval()))
}
/// The JSON-RPC provider is at the bottom-most position in the middleware stack. Here we check
/// if it has the key for the sender address unlocked, as well as supports the `eth_sign` call.
async fn is_signer(&self) -> bool {
match self.from {
Some(sender) => self.sign(vec![], &sender).await.is_ok(),
None => false,
}
}
/// Signs data using a specific account. This account needs to be unlocked.
async fn sign<T: Into<Bytes> + Send + Sync>(
&self,
data: T,
from: &Address,
) -> Result<Signature, ProviderError> {
let data = utils::serialize(&data.into());
let from = utils::serialize(from);
// get the response from `eth_sign` call and trim the 0x-prefix if present.
let sig: String = self.request("eth_sign", [from, data]).await?;
let sig = sig.strip_prefix("0x").unwrap_or(&sig);
// decode the signature.
let sig = hex::decode(sig)?;
Ok(Signature::try_from(sig.as_slice())
.map_err(|e| ProviderError::CustomError(e.to_string()))?)
}
/// Sign a transaction via RPC call
async fn sign_transaction(
&self,
_tx: &TypedTransaction,
_from: Address,
) -> Result<Signature, Self::Error> {
Err(ProviderError::SignerUnavailable).map_err(FromErr::from)
}
////// Contract state
/// Returns an array (possibly empty) of logs that match the filter
async fn get_logs(&self, filter: &Filter) -> Result<Vec<Log>, ProviderError> {
self.request("eth_getLogs", [filter]).await
}
/// Streams matching filter logs
async fn watch<'a>(
&'a self,
filter: &Filter,
) -> Result<FilterWatcher<'a, P, Log>, ProviderError> {
let id = self.new_filter(FilterKind::Logs(filter)).await?;
let filter = FilterWatcher::new(id, self).interval(self.get_interval());
Ok(filter)
}
/// Streams new block hashes
async fn watch_blocks(&self) -> Result<FilterWatcher<'_, P, H256>, ProviderError> {
let id = self.new_filter(FilterKind::NewBlocks).await?;
let filter = FilterWatcher::new(id, self).interval(self.get_interval());
Ok(filter)
}
/// Streams pending transactions
async fn watch_pending_transactions(
&self,
) -> Result<FilterWatcher<'_, P, H256>, ProviderError> {
let id = self.new_filter(FilterKind::PendingTransactions).await?;
let filter = FilterWatcher::new(id, self).interval(self.get_interval());
Ok(filter)
}
/// Creates a filter object, based on filter options, to notify when the state changes (logs).
/// To check if the state has changed, call `get_filter_changes` with the filter id.
async fn new_filter(&self, filter: FilterKind<'_>) -> Result<U256, ProviderError> {
let (method, args) = match filter {
FilterKind::NewBlocks => ("eth_newBlockFilter", vec![]),
FilterKind::PendingTransactions => ("eth_newPendingTransactionFilter", vec![]),
FilterKind::Logs(filter) => ("eth_newFilter", vec![utils::serialize(&filter)]),
};
self.request(method, args).await
}
/// Uninstalls a filter
async fn uninstall_filter<T: Into<U256> + Send + Sync>(
&self,
id: T,
) -> Result<bool, ProviderError> {
let id = utils::serialize(&id.into());
self.request("eth_uninstallFilter", [id]).await
}
/// Polling method for a filter, which returns an array of logs which occurred since last poll.
///
/// This method must be called with one of the following return types, depending on the filter
/// type:
/// - `eth_newBlockFilter`: [`H256`], returns block hashes
/// - `eth_newPendingTransactionFilter`: [`H256`], returns transaction hashes
/// - `eth_newFilter`: [`Log`], returns raw logs
///
/// If one of these types is not used, decoding will fail and the method will
/// return an error.
///
/// [`H256`]: ethers_core::types::H256
/// [`Log`]: ethers_core::types::Log
async fn get_filter_changes<T, R>(&self, id: T) -> Result<Vec<R>, ProviderError>
where
T: Into<U256> + Send + Sync,
R: Serialize + DeserializeOwned + Send + Sync + Debug,
{
let id = utils::serialize(&id.into());
self.request("eth_getFilterChanges", [id]).await
}
/// Get the storage of an address for a particular slot location
async fn get_storage_at<T: Into<NameOrAddress> + Send + Sync>(
&self,
from: T,
location: H256,
block: Option<BlockId>,
) -> Result<H256, ProviderError> {
let from = match from.into() {
NameOrAddress::Name(ens_name) => self.resolve_name(&ens_name).await?,
NameOrAddress::Address(addr) => addr,
};
let from = utils::serialize(&from);
let location = utils::serialize(&location);
let block = utils::serialize(&block.unwrap_or_else(|| BlockNumber::Latest.into()));
// get the hex encoded value.
let value: String = self.request("eth_getStorageAt", [from, location, block]).await?;
// get rid of the 0x prefix and left pad it with zeroes.
let value = format!("{:0>64}", value.replace("0x", ""));
Ok(H256::from_slice(&Vec::from_hex(value)?))
}
/// Returns the deployed code at a given address
async fn get_code<T: Into<NameOrAddress> + Send + Sync>(
&self,
at: T,
block: Option<BlockId>,
) -> Result<Bytes, ProviderError> {
let at = match at.into() {
NameOrAddress::Name(ens_name) => self.resolve_name(&ens_name).await?,
NameOrAddress::Address(addr) => addr,
};
let at = utils::serialize(&at);
let block = utils::serialize(&block.unwrap_or_else(|| BlockNumber::Latest.into()));
self.request("eth_getCode", [at, block]).await
}
/// Returns the EIP-1186 proof response
/// https://github.com/ethereum/EIPs/issues/1186
async fn get_proof<T: Into<NameOrAddress> + Send + Sync>(
&self,
from: T,
locations: Vec<H256>,
block: Option<BlockId>,
) -> Result<EIP1186ProofResponse, ProviderError> {
let from = match from.into() {
NameOrAddress::Name(ens_name) => self.resolve_name(&ens_name).await?,
NameOrAddress::Address(addr) => addr,
};
let from = utils::serialize(&from);
let locations = locations.iter().map(|location| utils::serialize(&location)).collect();
let block = utils::serialize(&block.unwrap_or_else(|| BlockNumber::Latest.into()));
self.request("eth_getProof", [from, locations, block]).await
}
////// Ethereum Naming Service
// The Ethereum Naming Service (ENS) allows easy to remember and use names to
// be assigned to Ethereum addresses. Any provider operation which takes an address
// may also take an ENS name.
//
// ENS also provides the ability for a reverse lookup, which determines the name for an address
// if it has been configured.
/// Returns the address that the `ens_name` resolves to (or None if not configured).
///
/// # Panics
///
/// If the bytes returned from the ENS registrar/resolver cannot be interpreted as
/// an address. This should theoretically never happen.
async fn resolve_name(&self, ens_name: &str) -> Result<Address, ProviderError> {
self.query_resolver(ParamType::Address, ens_name, ens::ADDR_SELECTOR).await
}
/// Returns the ENS name the `address` resolves to (or None if not configured).
/// # Panics
///
/// If the bytes returned from the ENS registrar/resolver cannot be interpreted as
/// a string. This should theoretically never happen.
async fn lookup_address(&self, address: Address) -> Result<String, ProviderError> {
let ens_name = ens::reverse_address(address);
self.query_resolver(ParamType::String, &ens_name, ens::NAME_SELECTOR).await
}
/// Returns the details of all transactions currently pending for inclusion in the next
/// block(s), as well as the ones that are being scheduled for future execution only.
/// Ref: [Here](https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_content)
async fn txpool_content(&self) -> Result<TxpoolContent, ProviderError> {
self.request("txpool_content", ()).await
}
/// Returns a summary of all the transactions currently pending for inclusion in the next
/// block(s), as well as the ones that are being scheduled for future execution only.
/// Ref: [Here](https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_inspect)
async fn txpool_inspect(&self) -> Result<TxpoolInspect, ProviderError> {
self.request("txpool_inspect", ()).await
}
/// Returns the number of transactions currently pending for inclusion in the next block(s), as
/// well as the ones that are being scheduled for future execution only.
/// Ref: [Here](https://geth.ethereum.org/docs/rpc/ns-txpool#txpool_status)
async fn txpool_status(&self) -> Result<TxpoolStatus, ProviderError> {
self.request("txpool_status", ()).await
}
/// Executes the given call and returns a number of possible traces for it
async fn trace_call<T: Into<TypedTransaction> + Send + Sync>(
&self,
req: T,
trace_type: Vec<TraceType>,
block: Option<BlockNumber>,
) -> Result<BlockTrace, ProviderError> {
let req = req.into();
let req = utils::serialize(&req);
let block = utils::serialize(&block.unwrap_or(BlockNumber::Latest));
let trace_type = utils::serialize(&trace_type);
self.request("trace_call", [req, trace_type, block]).await
}
/// Executes given calls and returns a number of possible traces for each call
async fn trace_call_many<T: Into<TypedTransaction> + Send + Sync>(
&self,
req: Vec<(T, Vec<TraceType>)>,
block: Option<BlockNumber>,
) -> Result<Vec<BlockTrace>, ProviderError> {
let req: Vec<(TypedTransaction, Vec<TraceType>)> =
req.into_iter().map(|(tx, trace_type)| (tx.into(), trace_type)).collect();
let req = utils::serialize(&req);
let block = utils::serialize(&block.unwrap_or(BlockNumber::Latest));
self.request("trace_callMany", [req, block]).await
}
/// Traces a call to `eth_sendRawTransaction` without making the call, returning the traces
async fn trace_raw_transaction(
&self,
data: Bytes,
trace_type: Vec<TraceType>,
) -> Result<BlockTrace, ProviderError> {
let data = utils::serialize(&data);
let trace_type = utils::serialize(&trace_type);
self.request("trace_rawTransaction", [data, trace_type]).await
}
/// Replays a transaction, returning the traces
async fn trace_replay_transaction(
&self,
hash: H256,
trace_type: Vec<TraceType>,
) -> Result<BlockTrace, ProviderError> {
let hash = utils::serialize(&hash);
let trace_type = utils::serialize(&trace_type);
self.request("trace_replayTransaction", [hash, trace_type]).await
}
/// Replays all transactions in a block returning the requested traces for each transaction
async fn trace_replay_block_transactions(
&self,
block: BlockNumber,
trace_type: Vec<TraceType>,
) -> Result<Vec<BlockTrace>, ProviderError> {
let block = utils::serialize(&block);
let trace_type = utils::serialize(&trace_type);
self.request("trace_replayBlockTransactions", [block, trace_type]).await
}
/// Returns traces created at given block
async fn trace_block(&self, block: BlockNumber) -> Result<Vec<Trace>, ProviderError> {
let block = utils::serialize(&block);
self.request("trace_block", [block]).await
}
/// Return traces matching the given filter
async fn trace_filter(&self, filter: TraceFilter) -> Result<Vec<Trace>, ProviderError> {
let filter = utils::serialize(&filter);
self.request("trace_filter", vec![filter]).await
}
/// Returns trace at the given position
async fn trace_get<T: Into<U64> + Send + Sync>(
&self,
hash: H256,
index: Vec<T>,
) -> Result<Trace, ProviderError> {
let hash = utils::serialize(&hash);
let index: Vec<U64> = index.into_iter().map(|i| i.into()).collect();
let index = utils::serialize(&index);
self.request("trace_get", vec![hash, index]).await
}
/// Returns all traces of a given transaction
async fn trace_transaction(&self, hash: H256) -> Result<Vec<Trace>, ProviderError> {
let hash = utils::serialize(&hash);
self.request("trace_transaction", vec![hash]).await
}
async fn subscribe<T, R>(
&self,
params: T,
) -> Result<SubscriptionStream<'_, P, R>, ProviderError>
where
T: Debug + Serialize + Send + Sync,
R: DeserializeOwned + Send + Sync,
P: PubsubClient,
{
let id: U256 = self.request("eth_subscribe", params).await?;
SubscriptionStream::new(id, self).map_err(Into::into)
}
async fn unsubscribe<T>(&self, id: T) -> Result<bool, ProviderError>
where
T: Into<U256> + Send + Sync,
P: PubsubClient,
{
self.request("eth_unsubscribe", [id.into()]).await
}
async fn subscribe_blocks(
&self,
) -> Result<SubscriptionStream<'_, P, Block<TxHash>>, ProviderError>
where
P: PubsubClient,
{
self.subscribe(["newHeads"]).await
}
async fn subscribe_pending_txs(
&self,
) -> Result<SubscriptionStream<'_, P, TxHash>, ProviderError>
where
P: PubsubClient,
{
self.subscribe(["newPendingTransactions"]).await
}
async fn subscribe_logs<'a>(
&'a self,
filter: &Filter,
) -> Result<SubscriptionStream<'a, P, Log>, ProviderError>
where
P: PubsubClient,
{
let logs = utils::serialize(&"logs"); // TODO: Make this a static
let filter = utils::serialize(filter);
self.subscribe([logs, filter]).await
}
async fn fee_history<T: Into<U256> + Send + Sync>(
&self,
block_count: T,
last_block: BlockNumber,
reward_percentiles: &[f64],
) -> Result<FeeHistory, Self::Error> {
let block_count = block_count.into();
let last_block = utils::serialize(&last_block);
let reward_percentiles = utils::serialize(&reward_percentiles);
// The blockCount param is expected to be an unsigned integer up to geth v1.10.6.
// Geth v1.10.7 onwards, this has been updated to a hex encoded form. Failure to
// decode the param from client side would fallback to the old API spec.
self.request(
"eth_feeHistory",
[utils::serialize(&block_count), last_block.clone(), reward_percentiles.clone()],
)
.await
.or(self
.request(
"eth_feeHistory",
[utils::serialize(&block_count.as_u64()), last_block, reward_percentiles],
)
.await)
}
}
impl<P: JsonRpcClient> Provider<P> {
async fn query_resolver<T: Detokenize>(
&self,
param: ParamType,
ens_name: &str,
selector: Selector,
) -> Result<T, ProviderError> {
// Get the ENS address, prioritize the local override variable
let ens_addr = self.ens.unwrap_or(ens::ENS_ADDRESS);
// first get the resolver responsible for this name
// the call will return a Bytes array which we convert to an address
let data = self.call(&ens::get_resolver(ens_addr, ens_name).into(), None).await?;
let resolver_address: Address = decode_bytes(ParamType::Address, data);
if resolver_address == Address::zero() {
return Err(ProviderError::EnsError(ens_name.to_owned()))
}
// resolve
let data =
self.call(&ens::resolve(resolver_address, selector, ens_name).into(), None).await?;
Ok(decode_bytes(param, data))
}
#[cfg(test)]
/// ganache-only function for mining empty blocks
pub async fn mine(&self, num_blocks: usize) -> Result<(), ProviderError> {
for _ in 0..num_blocks {
self.inner.request::<_, U256>("evm_mine", None::<()>).await.map_err(Into::into)?;
}
Ok(())
}
/// Sets the ENS Address (default: mainnet)
#[must_use]
pub fn ens<T: Into<Address>>(mut self, ens: T) -> Self {
self.ens = Some(ens.into());
self
}
/// Sets the default polling interval for event filters and pending transactions
/// (default: 7 seconds)
#[must_use]
pub fn interval<T: Into<Duration>>(mut self, interval: T) -> Self {
self.interval = Some(interval.into());
self
}
/// Gets the polling interval which the provider currently uses for event filters
/// and pending transactions (default: 7 seconds)
pub fn get_interval(&self) -> Duration {
self.interval.unwrap_or(DEFAULT_POLL_INTERVAL)
}
}
#[cfg(feature = "ws")]
impl Provider<crate::Ws> {
/// Direct connection to a websocket endpoint
#[cfg(not(target_arch = "wasm32"))]
pub async fn connect(
url: impl tokio_tungstenite::tungstenite::client::IntoClientRequest + Unpin,
) -> Result<Self, ProviderError> {
let ws = crate::Ws::connect(url).await?;
Ok(Self::new(ws))
}
/// Direct connection to a websocket endpoint
#[cfg(target_arch = "wasm32")]
pub async fn connect(url: &str) -> Result<Self, ProviderError> {
let ws = crate::Ws::connect(url).await?;
Ok(Self::new(ws))
}
}
#[cfg(all(target_family = "unix", feature = "ipc"))]
impl Provider<crate::Ipc> {
/// Direct connection to an IPC socket.
pub async fn connect_ipc(path: impl AsRef<std::path::Path>) -> Result<Self, ProviderError> {
let ipc = crate::Ipc::connect(path).await?;
Ok(Self::new(ipc))
}
}
impl<T: JsonRpcClientWrapper> Provider<QuorumProvider<T>> {
/// Provider that uses a quorum
pub fn quorum(inner: QuorumProvider<T>) -> Self {
Self::new(inner)
}
}
impl Provider<MockProvider> {
/// Returns a `Provider` instantiated with an internal "mock" transport.
///
/// # Example
///
/// ```
/// # async fn foo() -> Result<(), Box<dyn std::error::Error>> {
/// use ethers_core::types::U64;
/// use ethers_providers::{Middleware, Provider};
/// // Instantiate the provider
/// let (provider, mock) = Provider::mocked();
/// // Push the mock response
/// mock.push(U64::from(12))?;
/// // Make the call
/// let blk = provider.get_block_number().await.unwrap();
/// // The response matches
/// assert_eq!(blk.as_u64(), 12);
/// // and the request as well!
/// mock.assert_request("eth_blockNumber", ()).unwrap();
/// # Ok(())
/// # }
/// ```
pub fn mocked() -> (Self, MockProvider) {
let mock = MockProvider::new();
let mock_clone = mock.clone();
(Self::new(mock), mock_clone)
}
}
/// infallible conversion of Bytes to Address/String
///
/// # Panics
///
/// If the provided bytes were not an interpretation of an address
fn decode_bytes<T: Detokenize>(param: ParamType, bytes: Bytes) -> T {
let tokens = abi::decode(&[param], bytes.as_ref())
.expect("could not abi-decode bytes to address tokens");
T::from_tokens(tokens).expect("could not parse tokens as address")
}
impl TryFrom<&str> for Provider<HttpProvider> {
type Error = ParseError;
fn try_from(src: &str) -> Result<Self, Self::Error> {
Ok(Provider::new(HttpProvider::new(Url::parse(src)?)))
}
}
impl TryFrom<String> for Provider<HttpProvider> {
type Error = ParseError;
fn try_from(src: String) -> Result<Self, Self::Error> {
Provider::try_from(src.as_str())
}
}
/// A middleware supporting development-specific JSON RPC methods
///
/// # Example
///
///```
/// use ethers_providers::{Provider, Http, Middleware, DevRpcMiddleware};
/// use ethers_core::types::TransactionRequest;
/// use ethers_core::utils::Ganache;
/// use std::convert::TryFrom;
///
/// # #[tokio::main]
/// # async fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let ganache = Ganache::new().spawn();
/// let provider = Provider::<Http>::try_from(ganache.endpoint()).unwrap();
/// let client = DevRpcMiddleware::new(provider);
///
/// // snapshot the initial state
/// let block0 = client.get_block_number().await.unwrap();
/// let snap_id = client.snapshot().await.unwrap();
///
/// // send a transaction
/// let accounts = client.get_accounts().await?;
/// let from = accounts[0];
/// let to = accounts[1];
/// let balance_before = client.get_balance(to, None).await?;
/// let tx = TransactionRequest::new().to(to).value(1000).from(from);
/// client.send_transaction(tx, None).await?.await?;
/// let balance_after = client.get_balance(to, None).await?;
/// assert_eq!(balance_after, balance_before + 1000);
///
/// // revert to snapshot
/// client.revert_to_snapshot(snap_id).await.unwrap();
/// let balance_after_revert = client.get_balance(to, None).await?;
/// assert_eq!(balance_after_revert, balance_before);
/// # Ok(())
/// # }
/// ```
#[cfg(feature = "dev-rpc")]
pub mod dev_rpc {
use crate::{FromErr, Middleware, ProviderError};
use async_trait::async_trait;
use ethers_core::types::U256;
use thiserror::Error;
use std::fmt::Debug;
#[derive(Clone, Debug)]
pub struct DevRpcMiddleware<M>(M);
#[derive(Error, Debug)]
pub enum DevRpcMiddlewareError<M: Middleware> {
#[error("{0}")]
MiddlewareError(M::Error),
#[error("{0}")]
ProviderError(ProviderError),
#[error("Could not revert to snapshot")]
NoSnapshot,
}
#[async_trait]
impl<M: Middleware> Middleware for DevRpcMiddleware<M> {
type Error = DevRpcMiddlewareError<M>;
type Provider = M::Provider;
type Inner = M;
fn inner(&self) -> &M {
&self.0
}
}
impl<M: Middleware> FromErr<M::Error> for DevRpcMiddlewareError<M> {
fn from(src: M::Error) -> DevRpcMiddlewareError<M> {
DevRpcMiddlewareError::MiddlewareError(src)
}
}
impl<M> From<ProviderError> for DevRpcMiddlewareError<M>
where
M: Middleware,
{
fn from(src: ProviderError) -> Self {
Self::ProviderError(src)
}
}
impl<M: Middleware> DevRpcMiddleware<M> {
pub fn new(inner: M) -> Self {
Self(inner)
}
// both ganache and hardhat increment snapshot id even if no state has changed
pub async fn snapshot(&self) -> Result<U256, DevRpcMiddlewareError<M>> {
self.provider().request::<(), U256>("evm_snapshot", ()).await.map_err(From::from)
}
pub async fn revert_to_snapshot(&self, id: U256) -> Result<(), DevRpcMiddlewareError<M>> {
let ok = self
.provider()
.request::<[U256; 1], bool>("evm_revert", [id])
.await
.map_err(DevRpcMiddlewareError::ProviderError)?;
if ok {
Ok(())
} else {
Err(DevRpcMiddlewareError::NoSnapshot)
}
}
}
#[cfg(test)]
// Celo blocks can not get parsed when used with Ganache
#[cfg(not(feature = "celo"))]
mod tests {
use super::*;
use crate::{Http, Provider};
use ethers_core::utils::Ganache;
use std::convert::TryFrom;
#[tokio::test]
async fn test_snapshot() {
// launch ganache
let ganache = Ganache::new().spawn();
let provider = Provider::<Http>::try_from(ganache.endpoint()).unwrap();
let client = DevRpcMiddleware::new(provider);
// snapshot initial state
let block0 = client.get_block_number().await.unwrap();
let time0 = client.get_block(block0).await.unwrap().unwrap().timestamp;
let snap_id0 = client.snapshot().await.unwrap();
// mine a new block
client.provider().mine(1).await.unwrap();
// snapshot state
let block1 = client.get_block_number().await.unwrap();
let time1 = client.get_block(block1).await.unwrap().unwrap().timestamp;
let snap_id1 = client.snapshot().await.unwrap();
// mine some blocks
client.provider().mine(5).await.unwrap();
// snapshot state
let block2 = client.get_block_number().await.unwrap();
let time2 = client.get_block(block2).await.unwrap().unwrap().timestamp;
let snap_id2 = client.snapshot().await.unwrap();
// mine some blocks
client.provider().mine(5).await.unwrap();
// revert_to_snapshot should reset state to snap id
client.revert_to_snapshot(snap_id2).await.unwrap();
let block = client.get_block_number().await.unwrap();
let time = client.get_block(block).await.unwrap().unwrap().timestamp;
assert_eq!(block, block2);
assert_eq!(time, time2);
client.revert_to_snapshot(snap_id1).await.unwrap();
let block = client.get_block_number().await.unwrap();
let time = client.get_block(block).await.unwrap().unwrap().timestamp;
assert_eq!(block, block1);
assert_eq!(time, time1);
// revert_to_snapshot should throw given non-existent or
// previously used snapshot
let result = client.revert_to_snapshot(snap_id1).await;
assert!(result.is_err());
client.revert_to_snapshot(snap_id0).await.unwrap();
let block = client.get_block_number().await.unwrap();
let time = client.get_block(block).await.unwrap().unwrap().timestamp;
assert_eq!(block, block0);
assert_eq!(time, time0);
}
}
}
#[cfg(test)]
#[cfg(not(target_arch = "wasm32"))]
mod tests {
use super::*;
use crate::Http;
use ethers_core::{
types::{TransactionRequest, H256},
utils::Geth,
};
use futures_util::StreamExt;
const INFURA: &str = "https://mainnet.infura.io/v3/c60b0bb42f8a4c6481ecd229eddaca27";
#[tokio::test]
// Test vector from: https://docs.ethers.io/ethers.js/v5-beta/api-providers.html#id2
async fn mainnet_resolve_name() {
let provider = Provider::<HttpProvider>::try_from(INFURA).unwrap();
let addr = provider.resolve_name("registrar.firefly.eth").await.unwrap();
assert_eq!(addr, "6fC21092DA55B392b045eD78F4732bff3C580e2c".parse().unwrap());
// registrar not found
provider.resolve_name("asdfasdffads").await.unwrap_err();
// name not found
provider.resolve_name("asdfasdf.registrar.firefly.eth").await.unwrap_err();
}
#[tokio::test]
// Test vector from: https://docs.ethers.io/ethers.js/v5-beta/api-providers.html#id2
async fn mainnet_lookup_address() {
let provider = Provider::<HttpProvider>::try_from(INFURA).unwrap();
let name = provider
.lookup_address("6fC21092DA55B392b045eD78F4732bff3C580e2c".parse().unwrap())
.await
.unwrap();
assert_eq!(name, "registrar.firefly.eth");
provider
.lookup_address("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA".parse().unwrap())
.await
.unwrap_err();
}
#[tokio::test]
#[cfg_attr(feature = "celo", ignore)]
async fn test_new_block_filter() {
let num_blocks = 3;
let geth = Geth::new().block_time(2u64).spawn();
let provider = Provider::<Http>::try_from(geth.endpoint())
.unwrap()
.interval(Duration::from_millis(1000));
let start_block = provider.get_block_number().await.unwrap();
let stream = provider.watch_blocks().await.unwrap().stream();
let hashes: Vec<H256> = stream.take(num_blocks).collect::<Vec<H256>>().await;
for (i, hash) in hashes.iter().enumerate() {
let block = provider.get_block(start_block + i as u64 + 1).await.unwrap().unwrap();
assert_eq!(*hash, block.hash.unwrap());
}
}
#[tokio::test]
#[cfg_attr(feature = "celo", ignore)]
async fn test_is_signer() {
use ethers_core::utils::Ganache;
use std::str::FromStr;
let ganache = Ganache::new().spawn();
let provider = Provider::<Http>::try_from(ganache.endpoint())
.unwrap()
.with_sender(ganache.addresses()[0]);
assert!(provider.is_signer().await);
let provider = Provider::<Http>::try_from(ganache.endpoint()).unwrap();
assert!(!provider.is_signer().await);
let sender = Address::from_str("635B4764D1939DfAcD3a8014726159abC277BecC")
.expect("should be able to parse hex address");
let provider = Provider::<Http>::try_from(
"https://ropsten.infura.io/v3/fd8b88b56aa84f6da87b60f5441d6778",
)
.unwrap()
.with_sender(sender);
assert!(!provider.is_signer().await);
}
#[tokio::test]
async fn test_new_pending_txs_filter() {
let num_txs = 5;
let geth = Geth::new().block_time(2u64).spawn();
let provider = Provider::<Http>::try_from(geth.endpoint())
.unwrap()
.interval(Duration::from_millis(1000));
let accounts = provider.get_accounts().await.unwrap();
let stream = provider.watch_pending_transactions().await.unwrap().stream();
let mut tx_hashes = Vec::new();
let tx = TransactionRequest::new().from(accounts[0]).to(accounts[0]).value(1e18 as u64);
for _ in 0..num_txs {
tx_hashes.push(provider.send_transaction(tx.clone(), None).await.unwrap());
}
let hashes: Vec<H256> = stream.take(num_txs).collect::<Vec<H256>>().await;
assert_eq!(tx_hashes, hashes);
}
#[tokio::test]
async fn receipt_on_unmined_tx() {
use ethers_core::{
types::TransactionRequest,
utils::{parse_ether, Ganache},
};
let ganache = Ganache::new().block_time(2u64).spawn();
let provider = Provider::<Http>::try_from(ganache.endpoint()).unwrap();
let accounts = provider.get_accounts().await.unwrap();
let tx = TransactionRequest::pay(accounts[0], parse_ether(1u64).unwrap()).from(accounts[0]);
let pending_tx = provider.send_transaction(tx, None).await.unwrap();
assert!(provider.get_transaction_receipt(*pending_tx).await.unwrap().is_none());
let hash = *pending_tx;
let receipt = pending_tx.await.unwrap().unwrap();
assert_eq!(receipt.transaction_hash, hash);
}
#[tokio::test]
async fn parity_block_receipts() {
let url = match std::env::var("PARITY") {
Ok(inner) => inner,
_ => return,
};
let provider = Provider::<Http>::try_from(url.as_str()).unwrap();
let receipts = provider.parity_block_receipts(10657200).await.unwrap();
assert!(!receipts.is_empty());
}
#[tokio::test]
// Celo blocks can not get parsed when used with Ganache
#[cfg(not(feature = "celo"))]
async fn block_subscribe() {
use ethers_core::utils::Ganache;
use futures_util::StreamExt;
let ganache = Ganache::new().block_time(2u64).spawn();
let provider = Provider::connect(ganache.ws_endpoint()).await.unwrap();
let stream = provider.subscribe_blocks().await.unwrap();
let blocks = stream.take(3).map(|x| x.number.unwrap().as_u64()).collect::<Vec<_>>().await;
assert_eq!(blocks, vec![1, 2, 3]);
}
#[tokio::test]
#[cfg_attr(feature = "celo", ignore)]
async fn fee_history() {
let provider = Provider::<Http>::try_from(
"https://goerli.infura.io/v3/fd8b88b56aa84f6da87b60f5441d6778",
)
.unwrap();
let history =
provider.fee_history(10u64, BlockNumber::Latest, &[10.0, 40.0]).await.unwrap();
dbg!(&history);
}
#[tokio::test]
#[ignore]
#[cfg(feature = "ws")]
async fn test_trace_call_many() {
use ethers_core::types::H160;
// TODO: Implement ErigonInstance, so it'd be possible to test this.
let provider = Provider::new(crate::Ws::connect("ws://127.0.0.1:8545").await.unwrap());
let traces = provider
.trace_call_many(
vec![
(
TransactionRequest::new()
.from(Address::zero())
.to("0x0000000000000000000000000000000000000001"
.parse::<H160>()
.unwrap())
.value(U256::from(10000000000000000u128)),
vec![TraceType::StateDiff],
),
(
TransactionRequest::new()
.from(
"0x0000000000000000000000000000000000000001"
.parse::<H160>()
.unwrap(),
)
.to("0x0000000000000000000000000000000000000002"
.parse::<H160>()
.unwrap())
.value(U256::from(10000000000000000u128)),
vec![TraceType::StateDiff],
),
],
None,
)
.await
.unwrap();
dbg!(traces);
}
}