ethers-rs/ethers-providers/src/lib.rs

737 lines
25 KiB
Rust

#![cfg_attr(docsrs, feature(doc_cfg))]
#![deny(unsafe_code)]
#![deny(rustdoc::broken_intra_doc_links)]
#![allow(clippy::type_complexity)]
#![doc = include_str!("../README.md")]
mod transports;
use futures_util::future::join_all;
pub use transports::*;
mod provider;
// ENS support
pub mod ens;
mod pending_transaction;
pub use pending_transaction::PendingTransaction;
mod pending_escalator;
pub use pending_escalator::EscalatingPending;
mod log_query;
pub use log_query::LogQuery;
mod stream;
pub use futures_util::StreamExt;
pub use stream::{interval, FilterWatcher, TransactionStream, DEFAULT_POLL_INTERVAL};
mod pubsub;
pub use pubsub::{PubsubClient, SubscriptionStream};
pub mod call_raw;
pub mod erc;
use async_trait::async_trait;
use auto_impl::auto_impl;
use ethers_core::types::transaction::{eip2718::TypedTransaction, eip2930::AccessListWithGasUsed};
use serde::{de::DeserializeOwned, Serialize};
use std::{error::Error, fmt::Debug, future::Future, pin::Pin};
use url::Url;
pub use provider::{FilterKind, Provider, ProviderError};
// feature-enabled support for dev-rpc methods
#[cfg(feature = "dev-rpc")]
pub use provider::dev_rpc::DevRpcMiddleware;
/// A simple gas escalation policy
pub type EscalationPolicy = Box<dyn Fn(U256, usize) -> U256 + Send + Sync>;
// Helper type alias
#[cfg(target_arch = "wasm32")]
pub(crate) type PinBoxFut<'a, T> = Pin<Box<dyn Future<Output = Result<T, ProviderError>> + 'a>>;
#[cfg(not(target_arch = "wasm32"))]
pub(crate) type PinBoxFut<'a, T> =
Pin<Box<dyn Future<Output = Result<T, ProviderError>> + Send + 'a>>;
#[cfg_attr(target_arch = "wasm32", async_trait(?Send))]
#[cfg_attr(not(target_arch = "wasm32"), async_trait)]
#[auto_impl(&, Box, Arc)]
/// Trait which must be implemented by data transports to be used with the Ethereum
/// JSON-RPC provider.
pub trait JsonRpcClient: Debug + Send + Sync {
/// A JSON-RPC Error
type Error: Error + Into<ProviderError>;
/// Sends a request with the provided JSON-RPC and parameters serialized as JSON
async fn request<T, R>(&self, method: &str, params: T) -> Result<R, Self::Error>
where
T: Debug + Serialize + Send + Sync,
R: DeserializeOwned;
}
use ethers_core::types::*;
pub trait FromErr<T> {
fn from(src: T) -> Self;
}
/// Calls the future if `item` is None, otherwise returns a `futures::ok`
pub async fn maybe<F, T, E>(item: Option<T>, f: F) -> Result<T, E>
where
F: Future<Output = Result<T, E>>,
{
if let Some(item) = item {
futures_util::future::ok(item).await
} else {
f.await
}
}
/// Structure used in eth_syncing RPC
#[derive(Clone, Debug)]
pub enum SyncingStatus {
/// When client is synced to highest block, eth_syncing with return string "false"
IsFalse,
/// When client is still syncing past blocks we get IsSyncing information.
IsSyncing { starting_block: U256, current_block: U256, highest_block: U256 },
}
/// A middleware allows customizing requests send and received from an ethereum node.
///
/// Writing a middleware is as simple as:
/// 1. implementing the [`inner`](crate::Middleware::inner) method to point to the next layer in the
/// "middleware onion", 2. implementing the [`FromErr`](crate::FromErr) trait on your middleware's
/// error type 3. implementing any of the methods you want to override
///
/// ```rust
/// use ethers_providers::{Middleware, FromErr};
/// use ethers_core::types::{U64, TransactionRequest, U256, transaction::eip2718::TypedTransaction};
/// use thiserror::Error;
/// use async_trait::async_trait;
///
/// #[derive(Debug)]
/// struct MyMiddleware<M>(M);
///
/// #[derive(Error, Debug)]
/// pub enum MyError<M: Middleware> {
/// #[error("{0}")]
/// MiddlewareError(M::Error),
///
/// // Add your middleware's specific errors here
/// }
///
/// impl<M: Middleware> FromErr<M::Error> for MyError<M> {
/// fn from(src: M::Error) -> MyError<M> {
/// MyError::MiddlewareError(src)
/// }
/// }
///
/// #[async_trait]
/// impl<M> Middleware for MyMiddleware<M>
/// where
/// M: Middleware,
/// {
/// type Error = MyError<M>;
/// type Provider = M::Provider;
/// type Inner = M;
///
/// fn inner(&self) -> &M {
/// &self.0
/// }
///
/// /// Overrides the default `get_block_number` method to always return 0
/// async fn get_block_number(&self) -> Result<U64, Self::Error> {
/// Ok(U64::zero())
/// }
///
/// /// Overrides the default `estimate_gas` method to log that it was called,
/// /// before forwarding the call to the next layer.
/// async fn estimate_gas(&self, tx: &TypedTransaction) -> Result<U256, Self::Error> {
/// println!("Estimating gas...");
/// self.inner().estimate_gas(tx).await.map_err(FromErr::from)
/// }
/// }
/// ```
#[cfg_attr(target_arch = "wasm32", async_trait(?Send))]
#[cfg_attr(not(target_arch = "wasm32"), async_trait)]
#[auto_impl(&, Box, Arc)]
pub trait Middleware: Sync + Send + Debug {
type Error: Sync + Send + Error + FromErr<<Self::Inner as Middleware>::Error>;
type Provider: JsonRpcClient;
type Inner: Middleware<Provider = Self::Provider>;
/// The next middleware in the stack
fn inner(&self) -> &Self::Inner;
/// The HTTP or Websocket provider.
fn provider(&self) -> &Provider<Self::Provider> {
self.inner().provider()
}
fn default_sender(&self) -> Option<Address> {
self.inner().default_sender()
}
async fn client_version(&self) -> Result<String, Self::Error> {
self.inner().client_version().await.map_err(FromErr::from)
}
/// Fill necessary details of a transaction for dispatch
///
/// This function is defined on providers to behave as follows:
/// 1. populate the `from` field with the default sender
/// 2. resolve any ENS names in the tx `to` field
/// 3. Estimate gas usage _without_ access lists
/// 4. Estimate gas usage _with_ access lists
/// 5. Enable access lists IFF they are cheaper
/// 6. Poll and set legacy or 1559 gas prices
/// 7. Set the chain_id with the provider's, if not already set
///
/// It does NOT set the nonce by default.
/// It MAY override the gas amount set by the user, if access lists are
/// cheaper.
///
/// Middleware are encouraged to override any values _before_ delegating
/// to the inner implementation AND/OR modify the values provided by the
/// default implementation _after_ delegating.
///
/// E.g. a middleware wanting to double gas prices should consider doing so
/// _after_ delegating and allowing the default implementation to poll gas.
async fn fill_transaction(
&self,
tx: &mut TypedTransaction,
block: Option<BlockId>,
) -> Result<(), Self::Error> {
self.inner().fill_transaction(tx, block).await.map_err(FromErr::from)
}
async fn get_block_number(&self) -> Result<U64, Self::Error> {
self.inner().get_block_number().await.map_err(FromErr::from)
}
async fn send_transaction<T: Into<TypedTransaction> + Send + Sync>(
&self,
tx: T,
block: Option<BlockId>,
) -> Result<PendingTransaction<'_, Self::Provider>, Self::Error> {
self.inner().send_transaction(tx, block).await.map_err(FromErr::from)
}
/// Send a transaction with a simple escalation policy.
///
/// `policy` should be a boxed function that maps `original_gas_price`
/// and `number_of_previous_escalations` -> `new_gas_price`.
///
/// e.g. `Box::new(|start, escalation_index| start * 1250.pow(escalations) /
/// 1000.pow(escalations))`
async fn send_escalating<'a>(
&'a self,
tx: &TypedTransaction,
escalations: usize,
policy: EscalationPolicy,
) -> Result<EscalatingPending<'a, Self::Provider>, Self::Error> {
let mut original = tx.clone();
self.fill_transaction(&mut original, None).await?;
// set the nonce, if no nonce is found
if original.nonce().is_none() {
let nonce =
self.get_transaction_count(tx.from().copied().unwrap_or_default(), None).await?;
original.set_nonce(nonce);
}
let gas_price = original.gas_price().expect("filled");
let sign_futs: Vec<_> = (0..escalations)
.map(|i| {
let new_price = policy(gas_price, i);
let mut r = original.clone();
r.set_gas_price(new_price);
r
})
.map(|req| async move {
self.sign_transaction(&req, self.default_sender().unwrap_or_default())
.await
.map(|sig| req.rlp_signed(&sig))
})
.collect();
// we reverse for convenience. Ensuring that we can always just
// `pop()` the next tx off the back later
let mut signed = join_all(sign_futs).await.into_iter().collect::<Result<Vec<_>, _>>()?;
signed.reverse();
Ok(EscalatingPending::new(self.provider(), signed))
}
async fn resolve_name(&self, ens_name: &str) -> Result<Address, Self::Error> {
self.inner().resolve_name(ens_name).await.map_err(FromErr::from)
}
async fn lookup_address(&self, address: Address) -> Result<String, Self::Error> {
self.inner().lookup_address(address).await.map_err(FromErr::from)
}
async fn resolve_avatar(&self, ens_name: &str) -> Result<Url, Self::Error> {
self.inner().resolve_avatar(ens_name).await.map_err(FromErr::from)
}
async fn resolve_nft(&self, token: erc::ERCNFT) -> Result<Url, Self::Error> {
self.inner().resolve_nft(token).await.map_err(FromErr::from)
}
async fn resolve_field(&self, ens_name: &str, field: &str) -> Result<String, Self::Error> {
self.inner().resolve_field(ens_name, field).await.map_err(FromErr::from)
}
async fn get_block<T: Into<BlockId> + Send + Sync>(
&self,
block_hash_or_number: T,
) -> Result<Option<Block<TxHash>>, Self::Error> {
self.inner().get_block(block_hash_or_number).await.map_err(FromErr::from)
}
async fn get_block_with_txs<T: Into<BlockId> + Send + Sync>(
&self,
block_hash_or_number: T,
) -> Result<Option<Block<Transaction>>, Self::Error> {
self.inner().get_block_with_txs(block_hash_or_number).await.map_err(FromErr::from)
}
async fn get_uncle_count<T: Into<BlockId> + Send + Sync>(
&self,
block_hash_or_number: T,
) -> Result<U256, Self::Error> {
self.inner().get_uncle_count(block_hash_or_number).await.map_err(FromErr::from)
}
async fn get_uncle<T: Into<BlockId> + Send + Sync>(
&self,
block_hash_or_number: T,
idx: U64,
) -> Result<Option<Block<H256>>, Self::Error> {
self.inner().get_uncle(block_hash_or_number, idx).await.map_err(FromErr::from)
}
async fn get_transaction_count<T: Into<NameOrAddress> + Send + Sync>(
&self,
from: T,
block: Option<BlockId>,
) -> Result<U256, Self::Error> {
self.inner().get_transaction_count(from, block).await.map_err(FromErr::from)
}
async fn estimate_gas(&self, tx: &TypedTransaction) -> Result<U256, Self::Error> {
self.inner().estimate_gas(tx).await.map_err(FromErr::from)
}
async fn call(
&self,
tx: &TypedTransaction,
block: Option<BlockId>,
) -> Result<Bytes, Self::Error> {
self.inner().call(tx, block).await.map_err(FromErr::from)
}
async fn syncing(&self) -> Result<SyncingStatus, Self::Error> {
self.inner().syncing().await.map_err(FromErr::from)
}
async fn get_chainid(&self) -> Result<U256, Self::Error> {
self.inner().get_chainid().await.map_err(FromErr::from)
}
async fn get_net_version(&self) -> Result<String, Self::Error> {
self.inner().get_net_version().await.map_err(FromErr::from)
}
async fn get_balance<T: Into<NameOrAddress> + Send + Sync>(
&self,
from: T,
block: Option<BlockId>,
) -> Result<U256, Self::Error> {
self.inner().get_balance(from, block).await.map_err(FromErr::from)
}
async fn get_transaction<T: Send + Sync + Into<TxHash>>(
&self,
transaction_hash: T,
) -> Result<Option<Transaction>, Self::Error> {
self.inner().get_transaction(transaction_hash).await.map_err(FromErr::from)
}
async fn get_transaction_receipt<T: Send + Sync + Into<TxHash>>(
&self,
transaction_hash: T,
) -> Result<Option<TransactionReceipt>, Self::Error> {
self.inner().get_transaction_receipt(transaction_hash).await.map_err(FromErr::from)
}
async fn get_block_receipts<T: Into<BlockNumber> + Send + Sync>(
&self,
block: T,
) -> Result<Vec<TransactionReceipt>, Self::Error> {
self.inner().get_block_receipts(block).await.map_err(FromErr::from)
}
async fn get_gas_price(&self) -> Result<U256, Self::Error> {
self.inner().get_gas_price().await.map_err(FromErr::from)
}
async fn estimate_eip1559_fees(
&self,
estimator: Option<fn(U256, Vec<Vec<U256>>) -> (U256, U256)>,
) -> Result<(U256, U256), Self::Error> {
self.inner().estimate_eip1559_fees(estimator).await.map_err(FromErr::from)
}
async fn get_accounts(&self) -> Result<Vec<Address>, Self::Error> {
self.inner().get_accounts().await.map_err(FromErr::from)
}
async fn send_raw_transaction<'a>(
&'a self,
tx: Bytes,
) -> Result<PendingTransaction<'a, Self::Provider>, Self::Error> {
self.inner().send_raw_transaction(tx).await.map_err(FromErr::from)
}
/// This returns true if either the middleware stack contains a `SignerMiddleware`, or the
/// JSON-RPC provider has an unlocked key that can sign using the `eth_sign` call. If none of
/// the above conditions are met, then the middleware stack is not capable of signing data.
async fn is_signer(&self) -> bool {
self.inner().is_signer().await
}
async fn sign<T: Into<Bytes> + Send + Sync>(
&self,
data: T,
from: &Address,
) -> Result<Signature, Self::Error> {
self.inner().sign(data, from).await.map_err(FromErr::from)
}
/// Sign a transaction via RPC call
async fn sign_transaction(
&self,
tx: &TypedTransaction,
from: Address,
) -> Result<Signature, Self::Error> {
self.inner().sign_transaction(tx, from).await.map_err(FromErr::from)
}
////// Contract state
async fn get_logs(&self, filter: &Filter) -> Result<Vec<Log>, Self::Error> {
self.inner().get_logs(filter).await.map_err(FromErr::from)
}
/// Returns a stream of logs are loaded in pages of given page size
fn get_logs_paginated<'a>(
&'a self,
filter: &Filter,
page_size: u64,
) -> LogQuery<'a, Self::Provider> {
self.inner().get_logs_paginated(filter, page_size)
}
async fn new_filter(&self, filter: FilterKind<'_>) -> Result<U256, Self::Error> {
self.inner().new_filter(filter).await.map_err(FromErr::from)
}
async fn uninstall_filter<T: Into<U256> + Send + Sync>(
&self,
id: T,
) -> Result<bool, Self::Error> {
self.inner().uninstall_filter(id).await.map_err(FromErr::from)
}
async fn watch<'a>(
&'a self,
filter: &Filter,
) -> Result<FilterWatcher<'a, Self::Provider, Log>, Self::Error> {
self.inner().watch(filter).await.map_err(FromErr::from)
}
async fn watch_pending_transactions(
&self,
) -> Result<FilterWatcher<'_, Self::Provider, H256>, Self::Error> {
self.inner().watch_pending_transactions().await.map_err(FromErr::from)
}
async fn get_filter_changes<T, R>(&self, id: T) -> Result<Vec<R>, Self::Error>
where
T: Into<U256> + Send + Sync,
R: Serialize + DeserializeOwned + Send + Sync + Debug,
{
self.inner().get_filter_changes(id).await.map_err(FromErr::from)
}
async fn watch_blocks(&self) -> Result<FilterWatcher<'_, Self::Provider, H256>, Self::Error> {
self.inner().watch_blocks().await.map_err(FromErr::from)
}
async fn get_code<T: Into<NameOrAddress> + Send + Sync>(
&self,
at: T,
block: Option<BlockId>,
) -> Result<Bytes, Self::Error> {
self.inner().get_code(at, block).await.map_err(FromErr::from)
}
async fn get_storage_at<T: Into<NameOrAddress> + Send + Sync>(
&self,
from: T,
location: H256,
block: Option<BlockId>,
) -> Result<H256, Self::Error> {
self.inner().get_storage_at(from, location, block).await.map_err(FromErr::from)
}
async fn get_proof<T: Into<NameOrAddress> + Send + Sync>(
&self,
from: T,
locations: Vec<H256>,
block: Option<BlockId>,
) -> Result<EIP1186ProofResponse, Self::Error> {
self.inner().get_proof(from, locations, block).await.map_err(FromErr::from)
}
// Mempool inspection for Geth's API
async fn txpool_content(&self) -> Result<TxpoolContent, Self::Error> {
self.inner().txpool_content().await.map_err(FromErr::from)
}
async fn txpool_inspect(&self) -> Result<TxpoolInspect, Self::Error> {
self.inner().txpool_inspect().await.map_err(FromErr::from)
}
async fn txpool_status(&self) -> Result<TxpoolStatus, Self::Error> {
self.inner().txpool_status().await.map_err(FromErr::from)
}
// Parity `trace` support
/// Executes the given call and returns a number of possible traces for it
async fn trace_call<T: Into<TypedTransaction> + Send + Sync>(
&self,
req: T,
trace_type: Vec<TraceType>,
block: Option<BlockNumber>,
) -> Result<BlockTrace, Self::Error> {
self.inner().trace_call(req, trace_type, block).await.map_err(FromErr::from)
}
async fn trace_call_many<T: Into<TypedTransaction> + Send + Sync>(
&self,
req: Vec<(T, Vec<TraceType>)>,
block: Option<BlockNumber>,
) -> Result<Vec<BlockTrace>, Self::Error> {
self.inner().trace_call_many(req, block).await.map_err(FromErr::from)
}
/// Traces a call to `eth_sendRawTransaction` without making the call, returning the traces
async fn trace_raw_transaction(
&self,
data: Bytes,
trace_type: Vec<TraceType>,
) -> Result<BlockTrace, Self::Error> {
self.inner().trace_raw_transaction(data, trace_type).await.map_err(FromErr::from)
}
/// Replays a transaction, returning the traces
async fn trace_replay_transaction(
&self,
hash: H256,
trace_type: Vec<TraceType>,
) -> Result<BlockTrace, Self::Error> {
self.inner().trace_replay_transaction(hash, trace_type).await.map_err(FromErr::from)
}
/// Replays all transactions in a block returning the requested traces for each transaction
async fn trace_replay_block_transactions(
&self,
block: BlockNumber,
trace_type: Vec<TraceType>,
) -> Result<Vec<BlockTrace>, Self::Error> {
self.inner().trace_replay_block_transactions(block, trace_type).await.map_err(FromErr::from)
}
/// Returns traces created at given block
async fn trace_block(&self, block: BlockNumber) -> Result<Vec<Trace>, Self::Error> {
self.inner().trace_block(block).await.map_err(FromErr::from)
}
/// Return traces matching the given filter
async fn trace_filter(&self, filter: TraceFilter) -> Result<Vec<Trace>, Self::Error> {
self.inner().trace_filter(filter).await.map_err(FromErr::from)
}
/// Returns trace at the given position
async fn trace_get<T: Into<U64> + Send + Sync>(
&self,
hash: H256,
index: Vec<T>,
) -> Result<Trace, Self::Error> {
self.inner().trace_get(hash, index).await.map_err(FromErr::from)
}
/// Returns all traces of a given transaction
async fn trace_transaction(&self, hash: H256) -> Result<Vec<Trace>, Self::Error> {
self.inner().trace_transaction(hash).await.map_err(FromErr::from)
}
// Parity namespace
/// Returns all receipts for that block. Must be done on a parity node.
async fn parity_block_receipts<T: Into<BlockNumber> + Send + Sync>(
&self,
block: T,
) -> Result<Vec<TransactionReceipt>, Self::Error> {
self.inner().parity_block_receipts(block).await.map_err(FromErr::from)
}
async fn subscribe<T, R>(
&self,
params: T,
) -> Result<SubscriptionStream<'_, Self::Provider, R>, Self::Error>
where
T: Debug + Serialize + Send + Sync,
R: DeserializeOwned + Send + Sync,
<Self as Middleware>::Provider: PubsubClient,
{
self.inner().subscribe(params).await.map_err(FromErr::from)
}
async fn unsubscribe<T>(&self, id: T) -> Result<bool, Self::Error>
where
T: Into<U256> + Send + Sync,
<Self as Middleware>::Provider: PubsubClient,
{
self.inner().unsubscribe(id).await.map_err(FromErr::from)
}
async fn subscribe_blocks(
&self,
) -> Result<SubscriptionStream<'_, Self::Provider, Block<TxHash>>, Self::Error>
where
<Self as Middleware>::Provider: PubsubClient,
{
self.inner().subscribe_blocks().await.map_err(FromErr::from)
}
async fn subscribe_pending_txs(
&self,
) -> Result<SubscriptionStream<'_, Self::Provider, TxHash>, Self::Error>
where
<Self as Middleware>::Provider: PubsubClient,
{
self.inner().subscribe_pending_txs().await.map_err(FromErr::from)
}
async fn subscribe_logs<'a>(
&'a self,
filter: &Filter,
) -> Result<SubscriptionStream<'a, Self::Provider, Log>, Self::Error>
where
<Self as Middleware>::Provider: PubsubClient,
{
self.inner().subscribe_logs(filter).await.map_err(FromErr::from)
}
async fn fee_history<T: Into<U256> + serde::Serialize + Send + Sync>(
&self,
block_count: T,
last_block: BlockNumber,
reward_percentiles: &[f64],
) -> Result<FeeHistory, Self::Error> {
self.inner()
.fee_history(block_count, last_block, reward_percentiles)
.await
.map_err(FromErr::from)
}
async fn create_access_list(
&self,
tx: &TypedTransaction,
block: Option<BlockId>,
) -> Result<AccessListWithGasUsed, Self::Error> {
self.inner().create_access_list(tx, block).await.map_err(FromErr::from)
}
}
#[cfg(feature = "celo")]
#[cfg_attr(target_arch = "wasm32", async_trait(?Send))]
#[cfg_attr(not(target_arch = "wasm32"), async_trait)]
pub trait CeloMiddleware: Middleware {
async fn get_validators_bls_public_keys<T: Into<BlockId> + Send + Sync>(
&self,
block_id: T,
) -> Result<Vec<String>, ProviderError> {
self.provider().get_validators_bls_public_keys(block_id).await.map_err(FromErr::from)
}
}
pub use test_provider::{GOERLI, MAINNET, RINKEBY, ROPSTEN};
/// Pre-instantiated Infura HTTP clients which rotate through multiple API keys
/// to prevent rate limits
pub mod test_provider {
use super::*;
use crate::Http;
use once_cell::sync::Lazy;
use std::{convert::TryFrom, iter::Cycle, slice::Iter, sync::Mutex};
// List of infura keys to rotate through so we don't get rate limited
const INFURA_KEYS: &[&str] = &[
"6770454bc6ea42c58aac12978531b93f",
"7a8769b798b642f6933f2ed52042bd70",
"631fd9a6539644088297dc605d35fff3",
"16a8be88795540b9b3903d8de0f7baa5",
"f4a0bdad42674adab5fc0ac077ffab2b",
"5c812e02193c4ba793f8c214317582bd",
];
pub static RINKEBY: Lazy<TestProvider> =
Lazy::new(|| TestProvider::new(INFURA_KEYS, "rinkeby"));
pub static MAINNET: Lazy<TestProvider> =
Lazy::new(|| TestProvider::new(INFURA_KEYS, "mainnet"));
pub static GOERLI: Lazy<TestProvider> = Lazy::new(|| TestProvider::new(INFURA_KEYS, "goerli"));
pub static ROPSTEN: Lazy<TestProvider> =
Lazy::new(|| TestProvider::new(INFURA_KEYS, "ropsten"));
#[derive(Debug)]
pub struct TestProvider {
network: String,
keys: Mutex<Cycle<Iter<'static, &'static str>>>,
}
impl TestProvider {
pub fn new(keys: &'static [&'static str], network: &str) -> Self {
Self { keys: Mutex::new(keys.iter().cycle()), network: network.to_owned() }
}
pub fn url(&self) -> String {
format!(
"https://{}.infura.io/v3/{}",
self.network,
self.keys.lock().unwrap().next().unwrap()
)
}
pub fn provider(&self) -> Provider<Http> {
Provider::try_from(self.url().as_str()).unwrap()
}
#[cfg(feature = "ws")]
pub async fn ws(&self) -> Provider<crate::Ws> {
let url = format!(
"wss://{}.infura.io/ws/v3/{}",
self.network,
self.keys.lock().unwrap().next().unwrap()
);
Provider::connect(url.as_str()).await.unwrap()
}
}
}