use ethers::{contract::ContractFactory, types::H256}; mod common; pub use common::*; #[cfg(not(feature = "celo"))] mod eth_tests { use super::*; use ethers::{ contract::Multicall, providers::{Http, Middleware, Provider, StreamExt}, types::{Address, U256}, utils::Ganache, }; use std::{convert::TryFrom, sync::Arc}; #[tokio::test] async fn deploy_and_call_contract() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // launch ganache let ganache = Ganache::new().spawn(); // Instantiate the clients. We assume that clients consume the provider and the wallet // (which makes sense), so for multi-client tests, you must clone the provider. let client = connect(&ganache, 0); let client2 = connect(&ganache, 1); // create a factory which will be used to deploy instances of the contract let factory = ContractFactory::new(abi, bytecode, client.clone()); // `send` consumes the deployer so it must be cloned for later re-use // (practically it's not expected that you'll need to deploy multiple instances of // the _same_ deployer, so it's fine to clone here from a dev UX vs perf tradeoff) let deployer = factory.deploy("initial value".to_string()).unwrap(); let contract = deployer.clone().send().await.unwrap(); let get_value = contract.method::<_, String>("getValue", ()).unwrap(); let last_sender = contract.method::<_, Address>("lastSender", ()).unwrap(); // the initial value must be the one set in the constructor let value = get_value.clone().call().await.unwrap(); assert_eq!(value, "initial value"); // need to declare the method first, and only then send it // this is because it internally clones an Arc which would otherwise // get immediately dropped let contract_call = contract .connect(client2.clone()) .method::<_, H256>("setValue", "hi".to_owned()) .unwrap(); let calldata = contract_call.calldata().unwrap(); let gas_estimate = contract_call.estimate_gas().await.unwrap(); let tx_hash = contract_call.send().await.unwrap(); let tx = client.get_transaction(tx_hash).await.unwrap().unwrap(); let tx_receipt = client .get_transaction_receipt(tx_hash) .await .unwrap() .unwrap(); assert_eq!(last_sender.clone().call().await.unwrap(), client2.address()); assert_eq!(get_value.clone().call().await.unwrap(), "hi"); assert_eq!(tx.input, calldata); assert_eq!(tx_receipt.gas_used.unwrap(), gas_estimate); // we can also call contract methods at other addresses with the `at` call // (useful when interacting with multiple ERC20s for example) let contract2_addr = deployer.send().await.unwrap().address(); let contract2 = contract.at(contract2_addr); let init_value: String = contract2 .method::<_, String>("getValue", ()) .unwrap() .call() .await .unwrap(); let init_address = contract2 .method::<_, Address>("lastSender", ()) .unwrap() .call() .await .unwrap(); assert_eq!(init_address, Address::zero()); assert_eq!(init_value, "initial value"); // methods with multiple args also work let _tx_hash = contract .method::<_, H256>("setValues", ("hi".to_owned(), "bye".to_owned())) .unwrap() .send() .await .unwrap(); } #[tokio::test] async fn get_past_events() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let ganache = Ganache::new().spawn(); let client = connect(&ganache, 0); let contract = deploy(client.clone(), abi, bytecode).await; // make a call with `client2` let _tx_hash = contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .send() .await .unwrap(); // and we can fetch the events let logs: Vec = contract .event("ValueChanged") .unwrap() .from_block(0u64) .topic1(client.address()) // Corresponds to the first indexed parameter .query() .await .unwrap(); assert_eq!(logs[0].new_value, "initial value"); assert_eq!(logs[1].new_value, "hi"); assert_eq!(logs.len(), 2); } #[tokio::test] async fn watch_events() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let ganache = Ganache::new().spawn(); let client = connect(&ganache, 0); let contract = deploy(client, abi, bytecode).await; // We spawn the event listener: let mut stream = contract .event::("ValueChanged") .unwrap() .stream() .await .unwrap(); let num_calls = 3u64; // and we make a few calls for i in 0..num_calls { let tx_hash = contract .method::<_, H256>("setValue", i.to_string()) .unwrap() .send() .await .unwrap(); let _receipt = contract.pending_transaction(tx_hash).await.unwrap(); } for i in 0..num_calls { // unwrap the option of the stream, then unwrap the decoding result let log = stream.next().await.unwrap().unwrap(); assert_eq!(log.new_value, i.to_string()); } } #[tokio::test] async fn signer_on_node() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // spawn ganache let ganache = Ganache::new().spawn(); // connect let provider = Provider::::try_from(ganache.endpoint()) .unwrap() .interval(std::time::Duration::from_millis(50u64)); // get the first account let deployer = provider.get_accounts().await.unwrap()[0]; let client = Arc::new(provider.with_sender(deployer)); dbg!(deployer); let contract = deploy(client, abi, bytecode).await; // make a call without the signer let tx_hash = contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .send() .await .unwrap(); let _receipt = contract.pending_transaction(tx_hash).await.unwrap(); let value: String = contract .method::<_, String>("getValue", ()) .unwrap() .call() .await .unwrap(); assert_eq!(value, "hi"); } #[tokio::test] async fn multicall_aggregate() { // get ABI and bytecode for the Multcall contract let (multicall_abi, multicall_bytecode) = compile_contract("Multicall", "Multicall.sol"); // get ABI and bytecode for the NotSoSimpleStorage contract let (not_so_simple_abi, not_so_simple_bytecode) = compile_contract("NotSoSimpleStorage", "NotSoSimpleStorage.sol"); // get ABI and bytecode for the SimpleStorage contract let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // launch ganache let ganache = Ganache::new().spawn(); // Instantiate the clients. We assume that clients consume the provider and the wallet // (which makes sense), so for multi-client tests, you must clone the provider. // `client` is used to deploy the Multicall contract // `client2` is used to deploy the first SimpleStorage contract // `client3` is used to deploy the second SimpleStorage contract // `client4` is used to make the aggregate call let client = connect(&ganache, 0); let client2 = connect(&ganache, 1); let client3 = connect(&ganache, 2); let client4 = connect(&ganache, 3); // create a factory which will be used to deploy instances of the contract let multicall_factory = ContractFactory::new(multicall_abi, multicall_bytecode, client.clone()); let simple_factory = ContractFactory::new(abi.clone(), bytecode.clone(), client2.clone()); let not_so_simple_factory = ContractFactory::new(not_so_simple_abi, not_so_simple_bytecode, client3.clone()); let multicall_contract = multicall_factory.deploy(()).unwrap().send().await.unwrap(); let addr = multicall_contract.address(); let simple_contract = simple_factory .deploy("the first one".to_string()) .unwrap() .send() .await .unwrap(); let not_so_simple_contract = not_so_simple_factory .deploy("the second one".to_string()) .unwrap() .send() .await .unwrap(); // Client2 and Client3 broadcast txs to set the values for both contracts simple_contract .connect(client2.clone()) .method::<_, H256>("setValue", "reset first".to_owned()) .unwrap() .send() .await .unwrap(); not_so_simple_contract .connect(client3.clone()) .method::<_, H256>("setValue", "reset second".to_owned()) .unwrap() .send() .await .unwrap(); // get the calls for `value` and `last_sender` for both SimpleStorage contracts let value = simple_contract.method::<_, String>("getValue", ()).unwrap(); let value2 = not_so_simple_contract .method::<_, (String, Address)>("getValues", ()) .unwrap(); let last_sender = simple_contract .method::<_, Address>("lastSender", ()) .unwrap(); let last_sender2 = not_so_simple_contract .method::<_, Address>("lastSender", ()) .unwrap(); // initiate the Multicall instance and add calls one by one in builder style let mut multicall = Multicall::new(client4.clone(), Some(addr)).await.unwrap(); multicall .add_call(value) .add_call(value2) .add_call(last_sender) .add_call(last_sender2); let return_data: (String, (String, Address), Address, Address) = multicall.call().await.unwrap(); assert_eq!(return_data.0, "reset first"); assert_eq!((return_data.1).0, "reset second"); assert_eq!((return_data.1).1, client3.address()); assert_eq!(return_data.2, client2.address()); assert_eq!(return_data.3, client3.address()); // construct broadcast transactions that will be batched and broadcast via Multicall let broadcast = simple_contract .connect(client4.clone()) .method::<_, H256>("setValue", "first reset again".to_owned()) .unwrap(); let broadcast2 = not_so_simple_contract .connect(client4.clone()) .method::<_, H256>("setValue", "second reset again".to_owned()) .unwrap(); // use the already initialised Multicall instance, clearing the previous calls and adding // new calls. Previously we used the `.call()` functionality to do a batch of calls in one // go. Now we will use the `.send()` functionality to broadcast a batch of transactions // in one go let mut multicall_send = multicall.clone(); multicall_send .clear_calls() .add_call(broadcast) .add_call(broadcast2); // broadcast the transaction and wait for it to be mined let tx_hash = multicall_send.send().await.unwrap(); let _tx_receipt = client4.pending_transaction(tx_hash).await.unwrap(); // Do another multicall to check the updated return values // The `getValue` calls should return the last value we set in the batched broadcast // The `lastSender` calls should return the address of the Multicall contract, as it is // the one acting as proxy and calling our SimpleStorage contracts (msg.sender) let return_data: (String, (String, Address), Address, Address) = multicall.call().await.unwrap(); assert_eq!(return_data.0, "first reset again"); assert_eq!((return_data.1).0, "second reset again"); assert_eq!((return_data.1).1, multicall_contract.address()); assert_eq!(return_data.2, multicall_contract.address()); assert_eq!(return_data.3, multicall_contract.address()); let addrs = ganache.addresses(); // query ETH balances of multiple addresses // these keys haven't been used to do any tx // so should have 100 ETH multicall .clear_calls() .eth_balance_of(addrs[4]) .eth_balance_of(addrs[5]) .eth_balance_of(addrs[6]); let balances: (U256, U256, U256) = multicall.call().await.unwrap(); assert_eq!(balances.0, U256::from(100000000000000000000u128)); assert_eq!(balances.1, U256::from(100000000000000000000u128)); assert_eq!(balances.2, U256::from(100000000000000000000u128)); } } #[cfg(feature = "celo")] mod celo_tests { use super::*; use ethers::{ middleware::signer::SignerMiddleware, providers::{Http, Provider}, signers::LocalWallet, types::BlockNumber, }; use std::{convert::TryFrom, sync::Arc, time::Duration}; #[tokio::test] async fn deploy_and_call_contract() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // Celo testnet let provider = Provider::::try_from("https://alfajores-forno.celo-testnet.org") .unwrap() .interval(Duration::from_millis(6000)); // Funded with https://celo.org/developers/faucet let wallet = "d652abb81e8c686edba621a895531b1f291289b63b5ef09a94f686a5ecdd5db1" .parse::() .unwrap(); let client = SignerMiddleware::new(provider, wallet); let client = Arc::new(client); let factory = ContractFactory::new(abi, bytecode, client); let deployer = factory.deploy("initial value".to_string()).unwrap(); let contract = deployer.block(BlockNumber::Pending).send().await.unwrap(); let value: String = contract .method("getValue", ()) .unwrap() .call() .await .unwrap(); assert_eq!(value, "initial value"); // make a state mutating transaction let tx_hash = contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .send() .await .unwrap(); let _receipt = contract.pending_transaction(tx_hash).await.unwrap(); let value: String = contract .method("getValue", ()) .unwrap() .call() .await .unwrap(); assert_eq!(value, "hi"); } }