use ethers::{ contract::ContractFactory, types::{Filter, ValueOrArray, H256}, }; mod common; pub use common::*; #[cfg(not(feature = "celo"))] mod eth_tests { use super::*; use ethers::{ contract::{LogMeta, Multicall}, providers::{Http, Middleware, PendingTransaction, Provider, StreamExt}, types::{Address, BlockId, U256}, utils::Ganache, }; use std::{convert::TryFrom, sync::Arc}; #[tokio::test] async fn deploy_and_call_contract() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // launch ganache let ganache = Ganache::new().spawn(); // Instantiate the clients. We assume that clients consume the provider and the wallet // (which makes sense), so for multi-client tests, you must clone the provider. let client = connect(&ganache, 0); let client2 = connect(&ganache, 1); // create a factory which will be used to deploy instances of the contract let factory = ContractFactory::new(abi, bytecode, client.clone()); // `send` consumes the deployer so it must be cloned for later re-use // (practically it's not expected that you'll need to deploy multiple instances of // the _same_ deployer, so it's fine to clone here from a dev UX vs perf tradeoff) let deployer = factory .deploy("initial value".to_string()) .unwrap() .legacy(); let contract = deployer.clone().send().await.unwrap(); let get_value = contract.method::<_, String>("getValue", ()).unwrap(); let last_sender = contract.method::<_, Address>("lastSender", ()).unwrap(); // the initial value must be the one set in the constructor let value = get_value.clone().call().await.unwrap(); assert_eq!(value, "initial value"); // need to declare the method first, and only then send it // this is because it internally clones an Arc which would otherwise // get immediately dropped let contract_call = contract .connect(client2.clone()) .method::<_, H256>("setValue", "hi".to_owned()) .unwrap(); let calldata = contract_call.calldata().unwrap(); let gas_estimate = contract_call.estimate_gas().await.unwrap(); let contract_call = contract_call.legacy(); let pending_tx = contract_call.send().await.unwrap(); let tx = client.get_transaction(*pending_tx).await.unwrap().unwrap(); let tx_receipt = pending_tx.await.unwrap().unwrap(); assert_eq!(last_sender.clone().call().await.unwrap(), client2.address()); assert_eq!(get_value.clone().call().await.unwrap(), "hi"); assert_eq!(tx.input, calldata); assert_eq!(tx_receipt.gas_used.unwrap(), gas_estimate); // we can also call contract methods at other addresses with the `at` call // (useful when interacting with multiple ERC20s for example) let contract2_addr = deployer.send().await.unwrap().address(); let contract2 = contract.at(contract2_addr); let init_value: String = contract2 .method::<_, String>("getValue", ()) .unwrap() .call() .await .unwrap(); let init_address = contract2 .method::<_, Address>("lastSender", ()) .unwrap() .call() .await .unwrap(); assert_eq!(init_address, Address::zero()); assert_eq!(init_value, "initial value"); // methods with multiple args also work let _tx_hash = contract .method::<_, H256>("setValues", ("hi".to_owned(), "bye".to_owned())) .unwrap() .legacy() .send() .await .unwrap() .await .unwrap(); } #[tokio::test] async fn get_past_events() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let ganache = Ganache::new().spawn(); let client = connect(&ganache, 0); let contract = deploy(client.clone(), abi, bytecode).await; // make a call with `client` let func = contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .legacy(); let tx = func.send().await.unwrap(); let _receipt = tx.await.unwrap(); // and we can fetch the events let logs: Vec = contract .event() .from_block(0u64) .topic1(client.address()) // Corresponds to the first indexed parameter .query() .await .unwrap(); assert_eq!(logs[0].new_value, "initial value"); assert_eq!(logs[1].new_value, "hi"); assert_eq!(logs.len(), 2); // and we can fetch the events at a block hash let hash = client.get_block(1).await.unwrap().unwrap().hash.unwrap(); let logs: Vec = contract .event() .at_block_hash(hash) .topic1(client.address()) // Corresponds to the first indexed parameter .query() .await .unwrap(); assert_eq!(logs[0].new_value, "initial value"); assert_eq!(logs.len(), 1); } #[tokio::test] async fn get_events_with_meta() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let ganache = Ganache::new().spawn(); let client = connect(&ganache, 0); let contract = deploy(client.clone(), abi, bytecode).await; // and we can fetch the events let logs: Vec<(ValueChanged, LogMeta)> = contract .event() .from_block(0u64) .topic1(client.address()) // Corresponds to the first indexed parameter .query_with_meta() .await .unwrap(); assert_eq!(logs.len(), 1); let (log, meta) = &logs[0]; assert_eq!(log.new_value, "initial value"); assert_eq!(meta.address, contract.address()); assert_eq!(meta.log_index, 0.into()); assert_eq!(meta.block_number, 1.into()); let block = client.get_block(1).await.unwrap().unwrap(); assert_eq!(meta.block_hash, block.hash.unwrap()); assert_eq!(block.transactions.len(), 1); let tx = block.transactions[0]; assert_eq!(meta.transaction_hash, tx); assert_eq!(meta.transaction_index, 0.into()); } #[tokio::test] async fn call_past_state() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let ganache = Ganache::new().spawn(); let client = connect(&ganache, 0); let contract = deploy(client.clone(), abi, bytecode).await; let deployed_block = client.get_block_number().await.unwrap(); // assert initial state let value = contract .method::<_, String>("getValue", ()) .unwrap() .legacy() .call() .await .unwrap(); assert_eq!(value, "initial value"); // make a call with `client` let _tx_hash = *contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .legacy() .send() .await .unwrap(); // assert new value let value = contract .method::<_, String>("getValue", ()) .unwrap() .legacy() .call() .await .unwrap(); assert_eq!(value, "hi"); // assert previous value let value = contract .method::<_, String>("getValue", ()) .unwrap() .legacy() .block(BlockId::Number(deployed_block.into())) .call() .await .unwrap(); assert_eq!(value, "initial value"); // Here would be the place to test EIP-1898, specifying the `BlockId` of `call` as the // first block hash. However, Ganache does not implement this :/ // let hash = client.get_block(1).await.unwrap().unwrap().hash.unwrap(); // let value = contract // .method::<_, String>("getValue", ()) // .unwrap() // .block(BlockId::Hash(hash)) // .call() // .await // .unwrap(); // assert_eq!(value, "initial value"); } #[tokio::test] #[ignore] async fn call_past_hash_test() { // geth --dev --http --http.api eth,web3 let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let provider = Provider::::try_from("http://localhost:8545").unwrap(); let deployer = provider.get_accounts().await.unwrap()[0]; let client = Arc::new(provider.with_sender(deployer)); let contract = deploy(client.clone(), abi, bytecode).await; let deployed_block = client.get_block_number().await.unwrap(); // assert initial state let value = contract .method::<_, String>("getValue", ()) .unwrap() .call() .await .unwrap(); assert_eq!(value, "initial value"); // make a call with `client` let _tx_hash = *contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .send() .await .unwrap(); // assert new value let value = contract .method::<_, String>("getValue", ()) .unwrap() .call() .await .unwrap(); assert_eq!(value, "hi"); // assert previous value using block hash let hash = client .get_block(deployed_block) .await .unwrap() .unwrap() .hash .unwrap(); let value = contract .method::<_, String>("getValue", ()) .unwrap() .block(BlockId::Hash(hash)) .call() .await .unwrap(); assert_eq!(value, "initial value"); } #[tokio::test] async fn watch_events() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let ganache = Ganache::new().spawn(); let client = connect(&ganache, 0); let contract = deploy(client.clone(), abi.clone(), bytecode).await; // We spawn the event listener: let event = contract.event::(); let mut stream = event.stream().await.unwrap(); assert_eq!(stream.id, 1.into()); // Also set up a subscription for the same thing let ws = Provider::connect(ganache.ws_endpoint()).await.unwrap(); let contract2 = ethers_contract::Contract::new(contract.address(), abi, ws); let event2 = contract2.event::(); let mut subscription = event2.subscribe().await.unwrap(); assert_eq!(subscription.id, 2.into()); let mut subscription_meta = event2.subscribe().await.unwrap().with_meta(); assert_eq!(subscription_meta.0.id, 3.into()); let num_calls = 3u64; // and we make a few calls let num = client.get_block_number().await.unwrap(); for i in 0..num_calls { let call = contract .method::<_, H256>("setValue", i.to_string()) .unwrap() .legacy(); let pending_tx = call.send().await.unwrap(); let _receipt = pending_tx.await.unwrap(); } for i in 0..num_calls { // unwrap the option of the stream, then unwrap the decoding result let log = stream.next().await.unwrap().unwrap(); let log2 = subscription.next().await.unwrap().unwrap(); let (log3, meta) = subscription_meta.next().await.unwrap().unwrap(); assert_eq!(log.new_value, log3.new_value); assert_eq!(log.new_value, log2.new_value); assert_eq!(log.new_value, i.to_string()); assert_eq!(meta.block_number, num + i + 1); let hash = client .get_block(num + i + 1) .await .unwrap() .unwrap() .hash .unwrap(); assert_eq!(meta.block_hash, hash); } } #[tokio::test] async fn watch_subscription_events_multiple_addresses() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); let ganache = Ganache::new().spawn(); let client = connect(&ganache, 0); let contract_1 = deploy(client.clone(), abi.clone(), bytecode.clone()).await; let contract_2 = deploy(client.clone(), abi.clone(), bytecode).await; let ws = Provider::connect(ganache.ws_endpoint()).await.unwrap(); let filter = Filter::new().address(ValueOrArray::Array(vec![ contract_1.address(), contract_2.address(), ])); let mut stream = ws.subscribe_logs(&filter).await.unwrap(); // and we make a few calls let call = contract_1 .method::<_, H256>("setValue", "1".to_string()) .unwrap() .legacy(); let pending_tx = call.send().await.unwrap(); let _receipt = pending_tx.await.unwrap(); let call = contract_2 .method::<_, H256>("setValue", "2".to_string()) .unwrap() .legacy(); let pending_tx = call.send().await.unwrap(); let _receipt = pending_tx.await.unwrap(); // unwrap the option of the stream, then unwrap the decoding result let log_1 = stream.next().await.unwrap(); let log_2 = stream.next().await.unwrap(); assert_eq!(log_1.address, contract_1.address()); assert_eq!(log_2.address, contract_2.address()); } #[tokio::test] async fn signer_on_node() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // spawn ganache let ganache = Ganache::new().spawn(); // connect let provider = Provider::::try_from(ganache.endpoint()) .unwrap() .interval(std::time::Duration::from_millis(50u64)); // get the first account let deployer = provider.get_accounts().await.unwrap()[0]; let client = Arc::new(provider.with_sender(deployer)); let contract = deploy(client, abi, bytecode).await; // make a call without the signer let _receipt = contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .send() .await .unwrap() .await .unwrap(); let value: String = contract .method::<_, String>("getValue", ()) .unwrap() .call() .await .unwrap(); assert_eq!(value, "hi"); } #[tokio::test] async fn multicall_aggregate() { // get ABI and bytecode for the Multcall contract let (multicall_abi, multicall_bytecode) = compile_contract("Multicall", "Multicall.sol"); // get ABI and bytecode for the NotSoSimpleStorage contract let (not_so_simple_abi, not_so_simple_bytecode) = compile_contract("NotSoSimpleStorage", "NotSoSimpleStorage.sol"); // get ABI and bytecode for the SimpleStorage contract let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // launch ganache let ganache = Ganache::new().spawn(); // Instantiate the clients. We assume that clients consume the provider and the wallet // (which makes sense), so for multi-client tests, you must clone the provider. // `client` is used to deploy the Multicall contract // `client2` is used to deploy the first SimpleStorage contract // `client3` is used to deploy the second SimpleStorage contract // `client4` is used to make the aggregate call let client = connect(&ganache, 0); let client2 = connect(&ganache, 1); let client3 = connect(&ganache, 2); let client4 = connect(&ganache, 3); // create a factory which will be used to deploy instances of the contract let multicall_factory = ContractFactory::new(multicall_abi, multicall_bytecode, client.clone()); let simple_factory = ContractFactory::new(abi.clone(), bytecode.clone(), client2.clone()); let not_so_simple_factory = ContractFactory::new(not_so_simple_abi, not_so_simple_bytecode, client3.clone()); let multicall_contract = multicall_factory .deploy(()) .unwrap() .legacy() .send() .await .unwrap(); let addr = multicall_contract.address(); let simple_contract = simple_factory .deploy("the first one".to_string()) .unwrap() .legacy() .send() .await .unwrap(); let not_so_simple_contract = not_so_simple_factory .deploy("the second one".to_string()) .unwrap() .legacy() .send() .await .unwrap(); // Client2 and Client3 broadcast txs to set the values for both contracts simple_contract .connect(client2.clone()) .method::<_, H256>("setValue", "reset first".to_owned()) .unwrap() .legacy() .send() .await .unwrap(); not_so_simple_contract .connect(client3.clone()) .method::<_, H256>("setValue", "reset second".to_owned()) .unwrap() .legacy() .send() .await .unwrap(); // get the calls for `value` and `last_sender` for both SimpleStorage contracts let value = simple_contract.method::<_, String>("getValue", ()).unwrap(); let value2 = not_so_simple_contract .method::<_, (String, Address)>("getValues", ()) .unwrap(); let last_sender = simple_contract .method::<_, Address>("lastSender", ()) .unwrap(); let last_sender2 = not_so_simple_contract .method::<_, Address>("lastSender", ()) .unwrap(); // initiate the Multicall instance and add calls one by one in builder style let mut multicall = Multicall::new(client4.clone(), Some(addr)).await.unwrap(); multicall .add_call(value) .add_call(value2) .add_call(last_sender) .add_call(last_sender2); let return_data: (String, (String, Address), Address, Address) = multicall.call().await.unwrap(); assert_eq!(return_data.0, "reset first"); assert_eq!((return_data.1).0, "reset second"); assert_eq!((return_data.1).1, client3.address()); assert_eq!(return_data.2, client2.address()); assert_eq!(return_data.3, client3.address()); // construct broadcast transactions that will be batched and broadcast via Multicall let broadcast = simple_contract .connect(client4.clone()) .method::<_, H256>("setValue", "first reset again".to_owned()) .unwrap(); let broadcast2 = not_so_simple_contract .connect(client4.clone()) .method::<_, H256>("setValue", "second reset again".to_owned()) .unwrap(); // use the already initialised Multicall instance, clearing the previous calls and adding // new calls. Previously we used the `.call()` functionality to do a batch of calls in one // go. Now we will use the `.send()` functionality to broadcast a batch of transactions // in one go let mut multicall_send = multicall.clone(); multicall_send .clear_calls() .add_call(broadcast) .add_call(broadcast2); // broadcast the transaction and wait for it to be mined let tx_hash = multicall_send.legacy().send().await.unwrap(); let _tx_receipt = PendingTransaction::new(tx_hash, client.provider()) .await .unwrap(); // Do another multicall to check the updated return values // The `getValue` calls should return the last value we set in the batched broadcast // The `lastSender` calls should return the address of the Multicall contract, as it is // the one acting as proxy and calling our SimpleStorage contracts (msg.sender) let return_data: (String, (String, Address), Address, Address) = multicall.call().await.unwrap(); assert_eq!(return_data.0, "first reset again"); assert_eq!((return_data.1).0, "second reset again"); assert_eq!((return_data.1).1, multicall_contract.address()); assert_eq!(return_data.2, multicall_contract.address()); assert_eq!(return_data.3, multicall_contract.address()); let addrs = ganache.addresses(); // query ETH balances of multiple addresses // these keys haven't been used to do any tx // so should have 100 ETH multicall .clear_calls() .eth_balance_of(addrs[4]) .eth_balance_of(addrs[5]) .eth_balance_of(addrs[6]); let balances: (U256, U256, U256) = multicall.call().await.unwrap(); assert_eq!(balances.0, U256::from(100000000000000000000u128)); assert_eq!(balances.1, U256::from(100000000000000000000u128)); assert_eq!(balances.2, U256::from(100000000000000000000u128)); } } #[cfg(feature = "celo")] mod celo_tests { use super::*; use ethers::{ middleware::signer::SignerMiddleware, providers::{Http, Middleware, Provider}, signers::{LocalWallet, Signer}, types::BlockNumber, }; use std::{convert::TryFrom, sync::Arc, time::Duration}; #[tokio::test] async fn deploy_and_call_contract() { let (abi, bytecode) = compile_contract("SimpleStorage", "SimpleStorage.sol"); // Celo testnet let provider = Provider::::try_from("https://alfajores-forno.celo-testnet.org") .unwrap() .interval(Duration::from_millis(6000)); let chain_id = provider.get_chainid().await.unwrap().as_u64(); // Funded with https://celo.org/developers/faucet let wallet = "d652abb81e8c686edba621a895531b1f291289b63b5ef09a94f686a5ecdd5db1" .parse::() .unwrap() .with_chain_id(chain_id); let client = SignerMiddleware::new(provider, wallet); let client = Arc::new(client); let factory = ContractFactory::new(abi, bytecode, client); let deployer = factory .deploy("initial value".to_string()) .unwrap() .legacy(); let contract = deployer.block(BlockNumber::Pending).send().await.unwrap(); let value: String = contract .method("getValue", ()) .unwrap() .call() .await .unwrap(); assert_eq!(value, "initial value"); // make a state mutating transaction // gas estimation costs are sometimes under-reported on celo, // so we manually set it to avoid failures let call = contract .method::<_, H256>("setValue", "hi".to_owned()) .unwrap() .gas(100000); let pending_tx = call.send().await.unwrap(); let _receipt = pending_tx.await.unwrap(); let value: String = contract .method("getValue", ()) .unwrap() .call() .await .unwrap(); assert_eq!(value, "hi"); } }