fix(core): i256 docs (#2187)

* fix(core): i256 docs

* add doc
This commit is contained in:
DaniPopes 2023-02-25 01:44:47 +01:00 committed by GitHub
parent 7e12f3ba36
commit f59153ba66
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 19 additions and 22 deletions

View File

@ -539,14 +539,15 @@ impl I256 {
}
}
/// Wrapping addition.
/// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at the boundary of the
/// type.
#[inline(always)]
#[must_use]
pub fn wrapping_add(self, rhs: Self) -> Self {
self.overflowing_add(rhs).0
}
/// Calculates ``self` - `rhs``
/// Calculates `self` - `rhs`
///
/// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic
/// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
@ -1034,13 +1035,8 @@ impl I256 {
}
}
/// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask` removes
/// any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
///
/// Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is
/// restricted to the range of the type, rather than the bits shifted out of the LHS being
/// returned to the other end. The primitive integer types all implement a
/// [`rotate_left`](Self::rotate_left) function, which may be what you want instead.
/// Wrapping shift left. Computes `self << rhs`, returning 0 if larger than or equal to the
/// number of bits in `self`.
#[inline(always)]
#[must_use]
pub fn wrapping_shl(self, rhs: usize) -> Self {
@ -1072,31 +1068,32 @@ impl I256 {
}
}
/// Right shift by `rhs` bits.
/// Wrapping shift right. Computes `self >> rhs`, returning 0 if larger than or equal to the
/// number of bits in `self`.
#[inline(always)]
#[must_use]
pub fn wrapping_shr(self, rhs: usize) -> Self {
self.overflowing_shr(rhs).0
}
/// Arithmetic Shift Right operation. Shifts `shift` number of times to the right maintaining
/// the original sign. If the number is positive this is the same as logic shift right.
/// Arithmetic shift right operation. Computes `self >> rhs` maintaining the original sign. If
/// the number is positive this is the same as logic shift right.
#[inline(always)]
#[must_use]
pub fn asr(self, shift: usize) -> Self {
pub fn asr(self, rhs: usize) -> Self {
// Avoid shifting if we are going to know the result regardless of the value.
match (shift, self.sign()) {
match (rhs, self.sign()) {
(0, _) => self,
// Perform the shift.
(1..=254, Sign::Positive) => self >> shift,
(1..=254, Sign::Positive) => self.wrapping_shr(rhs),
(1..=254, Sign::Negative) => {
// We need to do: `for 0..shift { self >> 1 | 2^255 }`
// We can avoid the loop by doing: `self >> shift | ~(2^(255 - shift) - 1)`
// where '~' represents ones complement
const TWO: U256 = U256([2, 0, 0, 0]);
let bitwise_or = Self::from_raw(!(TWO.pow(U256::from(255 - shift)) - U256::one()));
(self >> shift) | bitwise_or
let bitwise_or = Self::from_raw(!(TWO.pow(U256::from(255 - rhs)) - U256::one()));
(self.wrapping_shr(rhs)) | bitwise_or
}
// It's always going to be zero (i.e. 00000000...00000000)
@ -1109,17 +1106,17 @@ impl I256 {
}
}
/// Arithmetic Shift Left operation. Shifts `shift` number of times to the left, checking for
/// overflow on the final result.
/// Arithmetic shift left operation. Computes `self << rhs`, checking for overflow on the final
/// result.
///
/// Returns `None` if the operation overflowed (most significant bit changes).
#[inline(always)]
#[must_use]
pub fn asl(self, shift: usize) -> Option<Self> {
if shift == 0 {
pub fn asl(self, rhs: usize) -> Option<Self> {
if rhs == 0 {
Some(self)
} else {
let result = self << shift;
let result = self.wrapping_shl(rhs);
if result.sign() != self.sign() {
// Overflow occurred
None