feat(contract): improve Multicall result handling (#2164)

* nits

* clippy

* ordering

* move

* chore: edition 2021

* chore: detokenize nit

* feat(contract): improve Multicall result handling

* docs: update CHANGELOG.md

* feat: make fields public

* chore: clippy
This commit is contained in:
DaniPopes 2023-02-21 03:50:28 +01:00 committed by GitHub
parent 3732de844c
commit e55b8116f3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 430 additions and 417 deletions

View File

@ -302,6 +302,8 @@
### Unreleased
- (Breaking) Improve Multicall result handling
[#2164](https://github.com/gakonst/ethers-rs/pull/2105)
- (Breaking) Make `Event` objects generic over borrow & remove lifetime
[#2105](https://github.com/gakonst/ethers-rs/pull/2105)
- Make `Factory` objects generic over the borrow trait, to allow non-arc mware

View File

@ -190,12 +190,9 @@ where
///
/// Note: this function _does not_ send a transaction from your account
pub async fn call(&self) -> Result<D, ContractError<M>> {
let bytes = self
.client
.borrow()
.call(&self.tx, self.block)
.await
.map_err(ContractError::MiddlewareError)?;
let client: &M = self.client.borrow();
let bytes =
client.call(&self.tx, self.block).await.map_err(ContractError::MiddlewareError)?;
// decode output
let data = decode_function_data(&self.function, &bytes, false)?;

View File

@ -31,8 +31,8 @@ mod multicall;
#[cfg(any(test, feature = "abigen"))]
#[cfg_attr(docsrs, doc(cfg(feature = "abigen")))]
pub use multicall::{
multicall_contract, Call, Multicall, MulticallContract, MulticallError, MulticallVersion,
MULTICALL_ADDRESS, MULTICALL_SUPPORTED_CHAIN_IDS,
contract as multicall_contract, Call, Multicall, MulticallContract, MulticallError,
MulticallVersion, MULTICALL_ADDRESS, MULTICALL_SUPPORTED_CHAIN_IDS,
};
/// This module exposes low lever builder structures which are only consumed by the

View File

@ -1,21 +1,24 @@
use crate::call::{ContractCall, ContractError};
use ethers_core::{
abi::{AbiDecode, Detokenize, Function, Token},
types::{Address, BlockNumber, Bytes, Chain, NameOrAddress, H160, U256},
abi::{AbiDecode, Detokenize, Function, InvalidOutputType, Token, Tokenizable},
types::{
transaction::eip2718::TypedTransaction, Address, BlockNumber, Bytes, Chain, NameOrAddress,
H160, U256,
},
};
use ethers_providers::{Middleware, PendingTransaction};
use std::{convert::TryFrom, fmt, sync::Arc};
use std::{convert::TryFrom, fmt, result::Result as StdResult, sync::Arc};
pub mod multicall_contract;
use multicall_contract::multicall_3::{
/// The Multicall contract bindings. Auto-generated with `abigen`.
pub mod contract {
ethers_contract_derive::abigen!(Multicall3, "src/multicall/multicall_abi.json");
}
pub use contract::Multicall3 as MulticallContract;
use contract::{
Call as Multicall1Call, Call3 as Multicall3Call, Call3Value as Multicall3CallValue,
Result as MulticallResult,
};
// Export the contract interface
pub use multicall_contract::multicall_3::Multicall3 as MulticallContract;
/// The Multicall3 contract address that is deployed in [`MULTICALL_SUPPORTED_CHAIN_IDS`]:
/// [`0xcA11bde05977b3631167028862bE2a173976CA11`](https://etherscan.io/address/0xcA11bde05977b3631167028862bE2a173976CA11)
pub const MULTICALL_ADDRESS: Address = H160([
@ -89,6 +92,9 @@ pub const MULTICALL_SUPPORTED_CHAIN_IDS: &[u64] = {
]
};
/// Type alias for `Result<T, MulticallError<M>>`
pub type Result<T, M> = StdResult<T, MulticallError<M>>;
#[derive(Debug, thiserror::Error)]
pub enum MulticallError<M: Middleware> {
#[error(transparent)]
@ -99,9 +105,47 @@ pub enum MulticallError<M: Middleware> {
#[error("Illegal revert: Multicall2 call reverted when it wasn't allowed to.")]
IllegalRevert,
#[error("Call reverted with data: \"{}\"", decode_error(_0))]
CallReverted(Bytes),
}
pub type Result<T, M> = std::result::Result<T, MulticallError<M>>;
impl<M: Middleware> From<ethers_core::abi::Error> for MulticallError<M> {
fn from(value: ethers_core::abi::Error) -> Self {
Self::ContractError(ContractError::DecodingError(value))
}
}
impl<M: Middleware> From<InvalidOutputType> for MulticallError<M> {
fn from(value: InvalidOutputType) -> Self {
Self::ContractError(ContractError::DetokenizationError(value))
}
}
impl<M: Middleware> MulticallError<M> {
pub fn into_bytes(self) -> Result<Bytes, M> {
match self {
Self::CallReverted(bytes) => Ok(bytes),
e => Err(e),
}
}
/// Returns the bytes that the call reverted with.
pub fn get_bytes(&self) -> Option<&Bytes> {
match self {
Self::CallReverted(bytes) => Some(bytes),
_ => None,
}
}
/// Formats the bytes that the call reverted with.
pub fn format_bytes(&self) -> Option<String> {
match self {
Self::CallReverted(bytes) => Some(decode_error(bytes)),
_ => None,
}
}
}
/// Helper struct for managing calls to be made to the `function` in smart contract `target`
/// with `data`.
@ -141,7 +185,7 @@ impl From<MulticallVersion> for u8 {
impl TryFrom<u8> for MulticallVersion {
type Error = String;
fn try_from(v: u8) -> std::result::Result<Self, Self::Error> {
fn try_from(v: u8) -> StdResult<Self, Self::Error> {
match v {
1 => Ok(MulticallVersion::Multicall),
2 => Ok(MulticallVersion::Multicall2),
@ -151,6 +195,23 @@ impl TryFrom<u8> for MulticallVersion {
}
}
impl MulticallVersion {
#[inline]
pub fn is_v1(&self) -> bool {
matches!(self, Self::Multicall)
}
#[inline]
pub fn is_v2(&self) -> bool {
matches!(self, Self::Multicall2)
}
#[inline]
pub fn is_v3(&self) -> bool {
matches!(self, Self::Multicall3)
}
}
/// A Multicall is an abstraction for sending batched calls/transactions to the Ethereum blockchain.
/// It stores an instance of the [`Multicall` smart contract](https://etherscan.io/address/0xcA11bde05977b3631167028862bE2a173976CA11#code)
/// and the user provided list of transactions to be called or executed on chain.
@ -190,7 +251,7 @@ impl TryFrom<u8> for MulticallVersion {
/// let abi: Abi = serde_json::from_str(r#"[{"inputs":[{"internalType":"string","name":"value","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"author","type":"address"},{"indexed":true,"internalType":"address","name":"oldAuthor","type":"address"},{"indexed":false,"internalType":"string","name":"oldValue","type":"string"},{"indexed":false,"internalType":"string","name":"newValue","type":"string"}],"name":"ValueChanged","type":"event"},{"inputs":[],"name":"getValue","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastSender","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"value","type":"string"}],"name":"setValue","outputs":[],"stateMutability":"nonpayable","type":"function"}]"#)?;
///
/// // connect to the network
/// let client = Provider::<Http>::try_from("https://kovan.infura.io/v3/c60b0bb42f8a4c6481ecd229eddaca27")?;
/// let client = Provider::<Http>::try_from("https://goerli.infura.io/v3/c60b0bb42f8a4c6481ecd229eddaca27")?;
///
/// // create the contract object. This will be used to construct the calls for multicall
/// let client = Arc::new(client);
@ -201,24 +262,18 @@ impl TryFrom<u8> for MulticallVersion {
/// let first_call = contract.method::<_, String>("getValue", ())?;
/// let second_call = contract.method::<_, Address>("lastSender", ())?;
///
/// // Since this example connects to the Kovan testnet, we need not provide an address for
/// // Since this example connects to a known chain, we need not provide an address for
/// // the Multicall contract and we set that to `None`. If you wish to provide the address
/// // for the Multicall contract, you can pass the `Some(multicall_addr)` argument.
/// // Construction of the `Multicall` instance follows the builder pattern:
/// let mut multicall = Multicall::new(client.clone(), None).await?.version(MulticallVersion::Multicall);
/// let mut multicall = Multicall::new(client.clone(), None).await?;
/// multicall
/// .add_call(first_call, false)
/// .add_call(second_call, false);
///
/// // `await`ing on the `call` method lets us fetch the return values of both the above calls
/// // in one single RPC call
/// let _return_data: (String, Address) = multicall.call().await?;
///
/// // using Multicall2 (version 2) or Multicall3 (version 3) differs when parsing `.call()` results
/// multicall = multicall.version(MulticallVersion::Multicall3);
///
/// // each call returns the results in a tuple, with the success status as the first element
/// let _return_data: ((bool, String), (bool, Address)) = multicall.call().await?;
/// let return_data: (String, Address) = multicall.call().await?;
///
/// // the same `Multicall` instance can be re-used to do a different batch of transactions.
/// // Say we wish to broadcast (send) a couple of transactions via the Multicall contract.
@ -231,27 +286,17 @@ impl TryFrom<u8> for MulticallVersion {
///
/// // `await`ing the `send` method waits for the transaction to be broadcast, which also
/// // returns the transaction hash
/// let _tx_receipt = multicall.send().await?.await.expect("tx dropped");
/// let tx_receipt = multicall.send().await?.await.expect("tx dropped");
///
/// // you can also query ETH balances of multiple addresses
/// let address_1 = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa".parse::<Address>()?;
/// let address_2 = "ffffffffffffffffffffffffffffffffffffffff".parse::<Address>()?;
///
/// // using version 1
/// multicall = multicall.version(MulticallVersion::Multicall);
/// multicall
/// .clear_calls()
/// .add_get_eth_balance(address_1, false)
/// .add_get_eth_balance(address_2, false);
/// let _balances: (U256, U256) = multicall.call().await?;
///
/// // or with version 2 and above
/// multicall = multicall.version(MulticallVersion::Multicall3);
/// multicall
/// .clear_calls()
/// .add_get_eth_balance(address_1, false)
/// .add_get_eth_balance(address_2, false);
/// let _balances: ((bool, U256), (bool, U256)) = multicall.call().await?;
/// let balances: (U256, U256) = multicall.call().await?;
///
/// # Ok(())
/// # }
@ -269,9 +314,17 @@ impl TryFrom<u8> for MulticallVersion {
pub struct Multicall<M> {
/// The Multicall contract interface.
pub contract: MulticallContract<M>,
version: MulticallVersion,
legacy: bool,
block: Option<BlockNumber>,
/// The version of which methods to use when making the contract call.
pub version: MulticallVersion,
/// Whether to use a legacy or a EIP-1559 transaction.
pub legacy: bool,
/// The `block` field of the Multicall aggregate call.
pub block: Option<BlockNumber>,
/// The internal call vector.
calls: Vec<Call>,
}
@ -429,10 +482,10 @@ impl<M: Middleware> Multicall<M> {
/// Appends a `call` to the list of calls of the Multicall instance.
///
/// Version specific details:
/// - 1: `allow_failure` is ignored.
/// - >=2: `allow_failure` specifies whether or not this call is allowed to revert in the
/// - `1`: `allow_failure` is ignored.
/// - `>=2`: `allow_failure` specifies whether or not this call is allowed to revert in the
/// multicall.
/// - 3: Transaction values are used when broadcasting transactions with [`send`], otherwise
/// - `3`: Transaction values are used when broadcasting transactions with [`send`], otherwise
/// they are always ignored.
///
/// [`send`]: #method.send
@ -441,32 +494,32 @@ impl<M: Middleware> Multicall<M> {
call: ContractCall<M, D>,
allow_failure: bool,
) -> &mut Self {
match (call.tx.to(), call.tx.data()) {
(Some(NameOrAddress::Address(target)), Some(data)) => {
let (to, data, value) = match call.tx {
TypedTransaction::Legacy(tx) => (tx.to, tx.data, tx.value),
TypedTransaction::Eip2930(tx) => (tx.tx.to, tx.tx.data, tx.tx.value),
TypedTransaction::Eip1559(tx) => (tx.to, tx.data, tx.value),
};
if data.is_none() && !call.function.outputs.is_empty() {
return self
}
if let Some(NameOrAddress::Address(target)) = to {
let call = Call {
target: *target,
data: data.clone(),
value: call.tx.value().cloned().unwrap_or_default(),
target,
data: data.unwrap_or_default(),
value: value.unwrap_or_default(),
allow_failure,
function: call.function,
};
self.calls.push(call);
}
self
}
_ => self,
}
}
/// Appends multiple `call`s to the list of calls of the Multicall instance.
///
/// Version specific details:
/// - 1: `allow_failure` is ignored.
/// - >=2: `allow_failure` specifies whether or not this call is allowed to revert in the
/// multicall.
/// - 3: Transaction values are used when broadcasting transactions with [`send`], otherwise
/// they are always ignored.
/// See [`add_call`] for more details.
///
/// [`send`]: #method.send
/// [`add_call`]: #method.add_call
pub fn add_calls<D: Detokenize>(
&mut self,
allow_failure: bool,
@ -611,21 +664,24 @@ impl<M: Middleware> Multicall<M> {
/// Queries the Ethereum blockchain using `eth_call`, but via the Multicall contract.
///
/// Note: this method _does not_ send a transaction from your account.
/// For handling calls that have the same result type, see [`call_array`].
///
/// For handling each call's result individually, see [`call_raw`].
///
/// [`call_raw`]: #method.call_raw
/// [`call_array`]: #method.call_array
///
/// # Errors
///
/// Returns a [`MulticallError`] if there are any errors in the RPC call or while detokenizing
/// the tokens back to the expected return type.
///
/// # Panics
///
/// If more than the maximum number of supported calls are added (16). The maximum limit is
/// constrained due to tokenization/detokenization support for tuples.
/// Returns an error if any call failed, even if `allow_failure` was set, or if the return data
/// was empty.
///
/// # Examples
///
/// The return type must be annotated while calling this method:
/// The return type must be annotated as a tuple when calling this method:
///
/// ```no_run
/// # async fn foo() -> Result<(), Box<dyn std::error::Error>> {
@ -641,31 +697,32 @@ impl<M: Middleware> Multicall<M> {
/// // 1. `returns (uint256)`
/// // 2. `returns (string, address)`
/// // 3. `returns (bool)`
/// // Version 1:
/// let result: (U256, (String, Address), bool) = multicall.call().await?;
/// // Version 2 and above (each call returns also the success status as the first element):
/// let result: ((bool, U256), (bool, (String, Address)), (bool, bool)) = multicall.call().await?;
/// // or using the turbofish syntax:
/// let result = multicall.call::<(U256, (String, Address), bool)>().await?;
/// # Ok(())
/// # }
/// ```
pub async fn call<D: Detokenize>(&self) -> Result<D, M> {
assert!(self.calls.len() <= 16, "Cannot decode more than 16 calls");
let tokens = self.call_raw().await?;
let tokens = vec![Token::Tuple(tokens)];
let data = D::from_tokens(tokens).map_err(ContractError::DetokenizationError)?;
Ok(data)
pub async fn call<T: Tokenizable>(&self) -> Result<T, M> {
let results = self.call_raw().await?;
let tokens = results
.into_iter()
.map(|res| res.map_err(MulticallError::CallReverted))
.collect::<Result<_, _>>()?;
T::from_token(Token::Tuple(tokens)).map_err(Into::into)
}
/// Queries the Ethereum blockchain using `eth_call`, but via the Multicall contract, assuming
/// that every call returns same data type.
///
/// Note: this method _does not_ send a transaction from your account.
/// that every call returns same type.
///
/// # Errors
///
/// Returns a [`MulticallError`] if there are any errors in the RPC call or while detokenizing
/// the tokens back to the expected return type.
///
/// Returns an error if any call failed, even if `allow_failure` was set, or if the return data
/// was empty.
///
/// # Examples
///
/// The return type must be annotated while calling this method:
@ -685,18 +742,24 @@ impl<M: Middleware> Multicall<M> {
/// # Ok(())
/// # }
/// ```
pub async fn call_array<D: Detokenize>(&self) -> Result<Vec<D>, M> {
let tokens = self.call_raw().await?;
let res: std::result::Result<Vec<D>, ContractError<M>> = tokens
pub async fn call_array<T: Tokenizable>(&self) -> Result<Vec<T>, M> {
self.call_raw()
.await?
.into_iter()
.map(|token| D::from_tokens(vec![token]).map_err(ContractError::DetokenizationError))
.collect();
Ok(res?)
.map(|res| {
res.map_err(MulticallError::CallReverted)
.and_then(|token| T::from_token(token).map_err(Into::into))
})
.collect()
}
/// Queries the Ethereum blockchain using `eth_call`, but via the Multicall contract and
/// without detokenization.
/// Queries the Ethereum blockchain using `eth_call`, but via the Multicall contract.
///
/// Returns a vector of `Result<Token, Bytes>` for each call added to the Multicall:
/// `Err(Bytes)` if the individual call failed while allowed or the return data was empty,
/// `Ok(Token)` otherwise.
///
/// If the Multicall version is 1, this will always be a vector of `Ok`.
///
/// # Errors
///
@ -715,97 +778,67 @@ impl<M: Middleware> Multicall<M> {
/// #
/// # let multicall = Multicall::new(client, None).await?;
/// // The consumer of the API is responsible for detokenizing the results
/// // as the results will be a Vec<Token>
/// let tokens = multicall.call_raw().await?;
/// # Ok(())
/// # }
/// ```
///
/// Note: this method _does not_ send a transaction from your account
///
/// [`ContractError<M>`]: crate::ContractError<M>
pub async fn call_raw(&self) -> Result<Vec<Token>, M> {
pub async fn call_raw(&self) -> Result<Vec<StdResult<Token, Bytes>>, M> {
// Different call result types based on version
let tokens: Vec<Token> = match self.version {
match self.version {
// Wrap the return data with `success: true` since version 1 reverts if any call failed
MulticallVersion::Multicall => {
let call = self.as_aggregate();
let (_, return_data) = call.call().await?;
self.calls
.iter()
.zip(&return_data)
.map(|(call, bytes)| {
// Always return an empty Bytes token for calls that return no data
if bytes.is_empty() {
Ok(Token::Bytes(Default::default()))
} else {
let mut tokens = call
.function
.decode_output(bytes)
.map_err(ContractError::DecodingError)?;
Ok(match tokens.len() {
0 => Token::Tuple(vec![]),
1 => tokens.remove(0),
_ => Token::Tuple(tokens),
})
}
})
.collect::<Result<Vec<Token>, M>>()?
let (_, bytes) = ContractCall::call(&call).await?;
self.parse_call_result(
bytes
.into_iter()
.map(|return_data| MulticallResult { success: true, return_data }),
)
}
// Same result type (`MulticallResult`)
v @ (MulticallVersion::Multicall2 | MulticallVersion::Multicall3) => {
let is_v2 = v == MulticallVersion::Multicall2;
let call = if is_v2 { self.as_try_aggregate() } else { self.as_aggregate_3() };
let return_data = ContractCall::call(&call).await?;
self.calls
.iter()
.zip(return_data.into_iter())
.map(|(call, res)| {
let bytes = &res.return_data;
// Always return an empty Bytes token for calls that return no data
let res_token: Token = if bytes.is_empty() {
Token::Bytes(Default::default())
} else if res.success {
// Decode using call.function
let mut res_tokens = call
.function
.decode_output(bytes)
.map_err(ContractError::DecodingError)?;
match res_tokens.len() {
0 => Token::Tuple(vec![]),
1 => res_tokens.remove(0),
_ => Token::Tuple(res_tokens),
}
MulticallVersion::Multicall2 | MulticallVersion::Multicall3 => {
let call = if self.version.is_v2() {
self.as_try_aggregate()
} else {
// Call reverted
self.as_aggregate_3()
};
let results = ContractCall::call(&call).await?;
self.parse_call_result(results.into_iter())
}
}
}
/// For each call and its `return_data`: if `success` is true, parses `return_data` with the
/// call's function outputs, otherwise returns the bytes in `Err`.
fn parse_call_result(
&self,
return_data: impl Iterator<Item = MulticallResult>,
) -> Result<Vec<StdResult<Token, Bytes>>, M> {
let mut results = Vec::with_capacity(self.calls.len());
for (call, MulticallResult { success, return_data }) in self.calls.iter().zip(return_data) {
let result = if !success || return_data.is_empty() {
// v2: In the function call to `tryAggregate`, the `allow_failure` check
// is done on a per-transaction basis, and we set this transaction-wide
// check to true when *any* call is allowed to fail. If this is true
// then a call that is not allowed to revert (`call.allow_failure`) may
// still do so because of other calls that are in the same multicall
// aggregate.
if !call.allow_failure {
if !success && !call.allow_failure {
return Err(MulticallError::IllegalRevert)
}
// Decode with "Error(string)" (0x08c379a0)
if bytes.len() >= 4 && bytes[..4] == [0x08, 0xc3, 0x79, 0xa0] {
Token::String(
String::decode(&bytes[4..]).map_err(ContractError::AbiError)?,
)
Err(return_data)
} else {
Token::Bytes(bytes.to_vec())
}
};
// (bool, (...))
Ok(Token::Tuple(vec![Token::Bool(res.success), res_token]))
let mut res_tokens = call.function.decode_output(return_data.as_ref())?;
Ok(if res_tokens.len() == 1 {
res_tokens.pop().unwrap()
} else {
Token::Tuple(res_tokens)
})
.collect::<Result<Vec<Token>, M>>()?
}
};
Ok(tokens)
results.push(result);
}
Ok(results)
}
/// Signs and broadcasts a batch of transactions by using the Multicall contract as proxy,
@ -837,15 +870,15 @@ impl<M: Middleware> Multicall<M> {
MulticallVersion::Multicall2 => self.as_try_aggregate().tx,
MulticallVersion::Multicall3 => self.as_aggregate_3_value().tx,
};
self.contract
.client_ref()
let client: &M = self.contract.client_ref();
client
.send_transaction(tx, self.block.map(Into::into))
.await
.map_err(|e| MulticallError::ContractError(ContractError::MiddlewareError(e)))
}
/// v1
#[inline]
fn as_aggregate(&self) -> ContractCall<M, (U256, Vec<Bytes>)> {
// Map the calls vector into appropriate types for `aggregate` function
let calls: Vec<Multicall1Call> = self
@ -862,6 +895,7 @@ impl<M: Middleware> Multicall<M> {
}
/// v2
#[inline]
fn as_try_aggregate(&self) -> ContractCall<M, Vec<MulticallResult>> {
let mut allow_failure = false;
// Map the calls vector into appropriate types for `try_aggregate` function
@ -885,6 +919,7 @@ impl<M: Middleware> Multicall<M> {
}
/// v3
#[inline]
fn as_aggregate_3(&self) -> ContractCall<M, Vec<MulticallResult>> {
// Map the calls vector into appropriate types for `aggregate_3` function
let calls: Vec<Multicall3Call> = self
@ -905,6 +940,7 @@ impl<M: Middleware> Multicall<M> {
}
/// v3 + values (only .send())
#[inline]
fn as_aggregate_3_value(&self) -> ContractCall<M, Vec<MulticallResult>> {
// Map the calls vector into appropriate types for `aggregate_3_value` function
let mut total_value = U256::zero();
@ -938,13 +974,23 @@ impl<M: Middleware> Multicall<M> {
/// Sets the block and legacy flags on a [ContractCall] if they were set on Multicall.
fn set_call_flags<D: Detokenize>(&self, mut call: ContractCall<M, D>) -> ContractCall<M, D> {
if let Some(block) = self.block {
call = call.block(block);
call.block = Some(block.into());
}
if self.legacy {
call = call.legacy();
}
call.legacy()
} else {
call
}
}
}
fn decode_error(bytes: &Bytes) -> String {
// Try decoding with "Error(string)" (0x08c379a0)
if bytes.len() >= 4 && bytes[..4] == [0x08, 0xc3, 0x79, 0xa0] {
if let Ok(string) = String::decode(&bytes[4..]) {
return string
}
}
bytes.to_string()
}

View File

@ -1 +0,0 @@
ethers_contract_derive::abigen!(Multicall3, "src/multicall/multicall_abi.json");

View File

@ -7,9 +7,11 @@ use ethers_core::types::{Filter, ValueOrArray, H256};
#[cfg(not(feature = "celo"))]
mod eth_tests {
use super::*;
use ethers_contract::{ContractInstance, EthEvent, LogMeta, Multicall, MulticallVersion};
use ethers_contract::{
ContractInstance, EthEvent, LogMeta, Multicall, MulticallError, MulticallVersion,
};
use ethers_core::{
abi::{encode, Detokenize, Token, Tokenizable},
abi::{encode, AbiEncode, Detokenize, Token, Tokenizable},
types::{transaction::eip712::Eip712, Address, BlockId, Bytes, H160, I256, U256},
utils::{keccak256, Anvil},
};
@ -635,21 +637,18 @@ mod eth_tests {
.await
.unwrap();
// build up a list of calls greater than the 16 max restriction
multicall.add_calls(
false,
std::iter::repeat(simple_contract.method::<_, String>("getValue", ()).unwrap())
.take(17), // .collect(),
.take(17),
);
// must use `call_raw` as `.calls` > 16
let tokens = multicall.call_raw().await.unwrap();
// if want to use, must detokenize manually
let results: Vec<String> = tokens
.iter()
.map(|token| {
.into_iter()
.map(|result| {
// decode manually using Tokenizable method
String::from_token(token.to_owned()).unwrap()
String::from_token(result.unwrap()).unwrap()
})
.collect();
assert_eq!(results, ["many"; 17]);
@ -685,11 +684,11 @@ mod eth_tests {
.unwrap();
let get_value_call = reverting_contract
.connect(client2.clone())
.method::<_, String>("getValue", (false))
.method::<_, String>("getValue", false)
.unwrap();
let get_value_reverting_call = reverting_contract
.connect(client.clone())
.method::<_, String>("getValue", (true))
.method::<_, String>("getValue", true)
.unwrap();
// .send reverts
@ -723,36 +722,31 @@ mod eth_tests {
.unwrap();
// .call reverts
// don't allow revert
multicall
.clear_calls()
.add_call(get_value_reverting_call.clone(), false)
.add_call(get_value_call.clone(), false);
let res = multicall.call::<((bool, String), (bool, String))>().await;
let err = res.unwrap_err();
assert!(err.to_string().contains("Multicall3: call failed"));
// don't allow revert -> entire call reverts
multicall.clear_calls().add_call(get_value_reverting_call.clone(), false);
assert!(matches!(
multicall.call::<(String,)>().await.unwrap_err(),
MulticallError::ContractError(_)
));
// allow revert
multicall
.clear_calls()
.add_call(get_value_reverting_call.clone(), true)
.add_call(get_value_call.clone(), false);
let res = multicall.call().await;
let data: ((bool, String), (bool, String)) = res.unwrap();
// allow revert -> call doesn't revert, but returns Err(_) in raw tokens
let expected = Bytes::from_static(b"getValue revert").encode();
multicall.clear_calls().add_call(get_value_reverting_call.clone(), true);
assert_eq!(multicall.call_raw().await.unwrap()[0].as_ref().unwrap_err()[4..], expected[..]);
assert_eq!(
multicall.call::<(String,)>().await.unwrap_err().into_bytes().unwrap()[4..],
expected[..]
);
assert!(!data.0 .0); // first call reverted
assert_eq!(data.0 .1, "getValue revert"); // first call revert data
assert!(data.1 .0); // second call didn't revert
assert_eq!(data.1 .1, "reset third again"); // second call return data
// test v2 illegal revert
// v2 illegal revert
multicall
.clear_calls()
.add_call(get_value_reverting_call.clone(), false) // don't allow revert
.add_call(get_value_call.clone(), true); // true here will result in `tryAggregate(false, ...)`
let res = multicall.call::<((bool, String), (bool, String))>().await;
let err = res.unwrap_err();
assert!(err.to_string().contains("Illegal revert"));
assert!(matches!(
multicall.call::<(String, String)>().await.unwrap_err(),
MulticallError::IllegalRevert
));
// test version 3
// aggregate3 is the same as try_aggregate except with allowing failure on a per-call basis.
@ -764,71 +758,49 @@ mod eth_tests {
let value_tx = reverting_contract.method::<_, H256>("deposit", ()).unwrap().value(amount);
let rc_addr = reverting_contract.address();
// add a second call because we can't decode using a single element tuple
// ((bool, U256)) == (bool, U256)
let bal_before: ((bool, U256), (bool, U256)) = multicall
.clear_calls()
.add_get_eth_balance(rc_addr, false)
.add_get_eth_balance(rc_addr, false)
.call()
.await
.unwrap();
let (bal_before,): (U256,) =
multicall.clear_calls().add_get_eth_balance(rc_addr, false).call().await.unwrap();
// send 2 value_tx
multicall.clear_calls().add_call(value_tx.clone(), false).add_call(value_tx.clone(), false);
multicall.send().await.unwrap();
let bal_after: ((bool, U256), (bool, U256)) = multicall
.clear_calls()
.add_get_eth_balance(rc_addr, false)
.add_get_eth_balance(rc_addr, false)
.call()
.await
.unwrap();
let (bal_after,): (U256,) =
multicall.clear_calls().add_get_eth_balance(rc_addr, false).call().await.unwrap();
assert_eq!(bal_after.0 .1, bal_before.0 .1 + U256::from(2) * amount);
assert_eq!(bal_after, bal_before + U256::from(2) * amount);
// test specific revert cases
// empty revert
let empty_revert = reverting_contract.method::<_, H256>("emptyRevert", ()).unwrap();
multicall
.clear_calls()
.add_call(empty_revert.clone(), true)
.add_call(empty_revert.clone(), true);
let res: ((bool, Bytes), (bool, Bytes)) = multicall.call().await.unwrap();
assert!(!res.0 .0);
assert_eq!(res.0 .1, Bytes::default());
multicall.clear_calls().add_call(empty_revert.clone(), true);
assert!(multicall.call::<(String,)>().await.unwrap_err().into_bytes().unwrap().is_empty());
// string revert
let string_revert =
reverting_contract.method::<_, H256>("stringRevert", ("String".to_string())).unwrap();
multicall.clear_calls().add_call(string_revert, true).add_call(empty_revert.clone(), true);
let res: ((bool, String), (bool, Bytes)) = multicall.call().await.unwrap();
assert!(!res.0 .0);
assert_eq!(res.0 .1, "String");
multicall.clear_calls().add_call(string_revert, true);
assert_eq!(
multicall.call::<(String,)>().await.unwrap_err().into_bytes().unwrap()[4..],
Bytes::from_static(b"String").encode()[..]
);
// custom error revert
let custom_error = reverting_contract.method::<_, H256>("customError", ()).unwrap();
multicall.clear_calls().add_call(custom_error, true).add_call(empty_revert.clone(), true);
let res: ((bool, Bytes), (bool, Bytes)) = multicall.call().await.unwrap();
let selector = &keccak256("CustomError()")[..4];
assert!(!res.0 .0);
assert_eq!(res.0 .1.len(), 4);
assert_eq!(&res.0 .1[..4], selector);
multicall.clear_calls().add_call(custom_error, true);
assert_eq!(
multicall.call::<(Bytes,)>().await.unwrap_err().into_bytes().unwrap()[..],
keccak256("CustomError()")[..4]
);
// custom error with data revert
let custom_error_with_data = reverting_contract
.method::<_, H256>("customErrorWithData", ("Data".to_string()))
.unwrap();
multicall
.clear_calls()
.add_call(custom_error_with_data, true)
.add_call(empty_revert.clone(), true);
let res: ((bool, Bytes), (bool, Bytes)) = multicall.call().await.unwrap();
let selector = &keccak256("CustomErrorWithData(string)")[..4];
assert!(!res.0 .0);
assert_eq!(&res.0 .1[..4], selector);
assert_eq!(&res.0 .1[4..], encode(&[Token::String("Data".to_string())]));
multicall.clear_calls().add_call(custom_error_with_data, true);
let bytes = multicall.call::<(Bytes,)>().await.unwrap_err().into_bytes().unwrap();
assert_eq!(bytes[..4], keccak256("CustomErrorWithData(string)")[..4]);
assert_eq!(bytes[4..], encode(&[Token::String("Data".to_string())]));
}
#[tokio::test]

View File

@ -1,11 +1,11 @@
//! Contract Functions Output types.
// Adapted from: [rust-web3](https://github.com/tomusdrw/rust-web3/blob/master/src/contract/tokens.rs)
#![allow(clippy::all)]
//!
//! Adapted from [rust-web3](https://github.com/tomusdrw/rust-web3/blob/master/src/contract/tokens.rs).
use crate::{
abi::Token,
types::{Address, Bytes, H256, I256, U128, U256},
};
use arrayvec::ArrayVec;
use thiserror::Error;
@ -22,41 +22,38 @@ pub trait Detokenize {
}
impl Detokenize for () {
fn from_tokens(_: Vec<Token>) -> std::result::Result<Self, InvalidOutputType>
where
Self: Sized,
{
fn from_tokens(_: Vec<Token>) -> std::result::Result<Self, InvalidOutputType> {
Ok(())
}
}
impl<T: Tokenizable> Detokenize for T {
fn from_tokens(mut tokens: Vec<Token>) -> Result<Self, InvalidOutputType> {
let token = match tokens.len() {
0 => Token::Tuple(vec![]),
1 => tokens.remove(0),
_ => Token::Tuple(tokens),
};
let token = if tokens.len() == 1 { tokens.pop().unwrap() } else { Token::Tuple(tokens) };
Self::from_token(token)
}
}
/// Tokens conversion trait
/// Convert types into [`Token`]s.
pub trait Tokenize {
/// Convert to list of tokens
/// Converts `self` into a `Vec<Token>`.
fn into_tokens(self) -> Vec<Token>;
}
impl<'a> Tokenize for &'a [Token] {
fn into_tokens(self) -> Vec<Token> {
flatten_tokens(self.to_vec())
let mut tokens = self.to_vec();
if tokens.len() == 1 {
flatten_token(tokens.pop().unwrap())
} else {
tokens
}
}
}
impl<T: Tokenizable> Tokenize for T {
fn into_tokens(self) -> Vec<Token> {
flatten_tokens(vec![self.into_token()])
flatten_token(self.into_token())
}
}
@ -72,13 +69,15 @@ pub trait Tokenizable {
fn from_token(token: Token) -> Result<Self, InvalidOutputType>
where
Self: Sized;
/// Converts a specified type back into token.
fn into_token(self) -> Token;
}
macro_rules! impl_tuples {
($num: expr, $( $ty: ident : $no: tt, )+) => {
impl<$($ty, )+> Tokenizable for ($($ty,)+) where
($num:expr, $( $ty:ident : $no:tt ),+ $(,)?) => {
impl<$( $ty ),+> Tokenizable for ($( $ty, )+)
where
$(
$ty: Tokenizable,
)+
@ -92,7 +91,8 @@ macro_rules! impl_tuples {
)+))
},
other => Err(InvalidOutputType(format!(
"Expected `Tuple`, got {:?}",
"Expected `Tuple` of length {}, got {:?}",
$num,
other,
))),
}
@ -133,6 +133,7 @@ impl Tokenizable for Token {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
Ok(token)
}
fn into_token(self) -> Token {
self
}
@ -212,6 +213,18 @@ impl Tokenizable for Address {
}
}
impl Tokenizable for bool {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
match token {
Token::Bool(data) => Ok(data),
other => Err(InvalidOutputType(format!("Expected `bool`, got {:?}", other))),
}
}
fn into_token(self) -> Token {
Token::Bool(self)
}
}
macro_rules! eth_uint_tokenizable {
($uint: ident, $name: expr) => {
impl Tokenizable for $uint {
@ -279,20 +292,99 @@ int_tokenizable!(u32, Uint);
int_tokenizable!(u64, Uint);
int_tokenizable!(u128, Uint);
impl Tokenizable for bool {
impl Tokenizable for Vec<u8> {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
match token {
Token::Bool(data) => Ok(data),
other => Err(InvalidOutputType(format!("Expected `bool`, got {:?}", other))),
Token::Bytes(data) => Ok(data),
Token::Array(data) => data.into_iter().map(u8::from_token).collect(),
Token::FixedBytes(data) => Ok(data),
other => Err(InvalidOutputType(format!("Expected `bytes`, got {:?}", other))),
}
}
fn into_token(self) -> Token {
Token::Bool(self)
Token::Array(self.into_iter().map(Tokenizable::into_token).collect())
}
}
/// Marker trait for `Tokenizable` types that are can tokenized to and from a
/// `Token::Array` and `Token:FixedArray`.
impl<T: TokenizableItem> Tokenizable for Vec<T> {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
match token {
Token::FixedArray(tokens) | Token::Array(tokens) => {
tokens.into_iter().map(Tokenizable::from_token).collect()
}
other => Err(InvalidOutputType(format!("Expected `Array`, got {:?}", other))),
}
}
fn into_token(self) -> Token {
Token::Array(self.into_iter().map(Tokenizable::into_token).collect())
}
}
impl<const N: usize> Tokenizable for [u8; N] {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
match token {
Token::FixedBytes(bytes) => {
if bytes.len() != N {
return Err(InvalidOutputType(format!(
"Expected `FixedBytes({})`, got FixedBytes({})",
N,
bytes.len()
)))
}
let mut arr = [0; N];
arr.copy_from_slice(&bytes);
Ok(arr)
}
other => {
Err(InvalidOutputType(format!("Expected `FixedBytes({})`, got {:?}", N, other)))
}
}
}
fn into_token(self) -> Token {
Token::FixedBytes(self.to_vec())
}
}
impl<T: TokenizableItem + Clone, const N: usize> Tokenizable for [T; N] {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
match token {
Token::FixedArray(tokens) => {
if tokens.len() != N {
return Err(InvalidOutputType(format!(
"Expected `FixedArray({})`, got FixedArray({})",
N,
tokens.len()
)))
}
let mut arr = ArrayVec::<T, N>::new();
let mut it = tokens.into_iter().map(T::from_token);
for _ in 0..N {
arr.push(it.next().expect("Length validated in guard; qed")?);
}
// Can't use expect here because [T; N]: Debug is not satisfied.
match arr.into_inner() {
Ok(arr) => Ok(arr),
Err(_) => panic!("All elements inserted so the array is full; qed"),
}
}
other => {
Err(InvalidOutputType(format!("Expected `FixedArray({})`, got {:?}", N, other)))
}
}
}
fn into_token(self) -> Token {
Token::FixedArray(ArrayVec::from(self).into_iter().map(T::into_token).collect())
}
}
/// Marker trait for `Tokenizable` types that are can tokenized to and from a `Token::Array` and
/// `Token:FixedArray`.
pub trait TokenizableItem: Tokenizable {}
macro_rules! tokenizable_item {
@ -308,9 +400,16 @@ tokenizable_item! {
i8, i16, i32, i64, i128, u16, u32, u64, u128, Bytes, bytes::Bytes,
}
impl<T: TokenizableItem> TokenizableItem for Vec<T> {}
impl<const N: usize> TokenizableItem for [u8; N] {}
impl<T: TokenizableItem + Clone, const N: usize> TokenizableItem for [T; N] {}
macro_rules! impl_tokenizable_item_tuple {
($( $ty: ident , )+) => {
impl<$($ty, )+> TokenizableItem for ($($ty,)+) where
($( $ty:ident ),+ $(,)?) => {
impl<$( $ty ),+> TokenizableItem for ($( $ty, )+)
where
$(
$ty: Tokenizable,
)+
@ -340,117 +439,15 @@ impl_tokenizable_item_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,
impl_tokenizable_item_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T,);
impl_tokenizable_item_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,);
impl Tokenizable for Vec<u8> {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
/// Helper for flattening non-nested tokens into their inner types;
///
/// e.g. `(A, B, C)` would get tokenized to `Tuple([A, B, C])` when in fact we need `[A, B, C]`.
#[inline]
fn flatten_token(token: Token) -> Vec<Token> {
// flatten the tokens if required and there is no nesting
match token {
Token::Bytes(data) => Ok(data),
Token::Array(data) => data.into_iter().map(u8::from_token).collect(),
Token::FixedBytes(data) => Ok(data),
other => Err(InvalidOutputType(format!("Expected `bytes`, got {:?}", other))),
}
}
fn into_token(self) -> Token {
Token::Array(self.into_iter().map(Tokenizable::into_token).collect())
}
}
impl<T: TokenizableItem> Tokenizable for Vec<T> {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
match token {
Token::FixedArray(tokens) | Token::Array(tokens) => {
tokens.into_iter().map(Tokenizable::from_token).collect()
}
other => Err(InvalidOutputType(format!("Expected `Array`, got {:?}", other))),
}
}
fn into_token(self) -> Token {
Token::Array(self.into_iter().map(Tokenizable::into_token).collect())
}
}
impl<T: TokenizableItem> TokenizableItem for Vec<T> {}
impl<const N: usize> Tokenizable for [u8; N] {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
match token {
Token::FixedBytes(bytes) => {
if bytes.len() != N {
return Err(InvalidOutputType(format!(
"Expected `FixedBytes({})`, got FixedBytes({})",
N,
bytes.len()
)))
}
let mut arr = [0; N];
arr.copy_from_slice(&bytes);
Ok(arr)
}
other => {
Err(InvalidOutputType(format!("Expected `FixedBytes({})`, got {:?}", N, other))
.into())
}
}
}
fn into_token(self) -> Token {
Token::FixedBytes(self.to_vec())
}
}
impl<const N: usize> TokenizableItem for [u8; N] {}
impl<T: TokenizableItem + Clone, const N: usize> Tokenizable for [T; N] {
fn from_token(token: Token) -> Result<Self, InvalidOutputType> {
match token {
Token::FixedArray(tokens) => {
if tokens.len() != N {
return Err(InvalidOutputType(format!(
"Expected `FixedArray({})`, got FixedArray({})",
N,
tokens.len()
)))
}
let mut arr = ArrayVec::<T, N>::new();
let mut it = tokens.into_iter().map(T::from_token);
for _ in 0..N {
arr.push(it.next().expect("Length validated in guard; qed")?);
}
// Can't use expect here because [T; N]: Debug is not satisfied.
match arr.into_inner() {
Ok(arr) => Ok(arr),
Err(_) => panic!("All elements inserted so the array is full; qed"),
}
}
other => {
Err(InvalidOutputType(format!("Expected `FixedArray({})`, got {:?}", N, other))
.into())
}
}
}
fn into_token(self) -> Token {
Token::FixedArray(ArrayVec::from(self).into_iter().map(T::into_token).collect())
}
}
impl<T: TokenizableItem + Clone, const N: usize> TokenizableItem for [T; N] {}
/// Helper for flattening non-nested tokens into their inner
/// types, e.g. (A, B, C ) would get tokenized to Tuple([A, B, C])
/// when in fact we need [A, B, C].
fn flatten_tokens(mut tokens: Vec<Token>) -> Vec<Token> {
if tokens.len() == 1 {
// flatten the tokens if required
// and there is no nesting
match tokens.remove(0) {
Token::Tuple(inner) => inner,
other => vec![other],
}
} else {
tokens
token => vec![token],
}
}
@ -460,33 +457,33 @@ mod tests {
use crate::types::{Address, U256};
use ethabi::Token;
fn output<R: Detokenize>() -> R {
fn assert_detokenize<T: Detokenize>() -> T {
unimplemented!()
}
#[test]
#[ignore]
fn should_be_able_to_compile() {
let _tokens: Vec<Token> = output();
let _uint: U256 = output();
let _address: Address = output();
let _string: String = output();
let _bool: bool = output();
let _bytes: Vec<u8> = output();
let _tokens: Vec<Token> = assert_detokenize();
let _uint: U256 = assert_detokenize();
let _address: Address = assert_detokenize();
let _string: String = assert_detokenize();
let _bool: bool = assert_detokenize();
let _bytes: Vec<u8> = assert_detokenize();
let _pair: (U256, bool) = output();
let _vec: Vec<U256> = output();
let _array: [U256; 4] = output();
let _bytes: Vec<[[u8; 1]; 64]> = output();
let _pair: (U256, bool) = assert_detokenize();
let _vec: Vec<U256> = assert_detokenize();
let _array: [U256; 4] = assert_detokenize();
let _bytes: Vec<[[u8; 1]; 64]> = assert_detokenize();
let _mixed: (Vec<Vec<u8>>, [U256; 4], Vec<U256>, U256) = output();
let _mixed: (Vec<Vec<u8>>, [U256; 4], Vec<U256>, U256) = assert_detokenize();
let _ints: (i16, i32, i64, i128) = output();
let _uints: (u16, u32, u64, u128) = output();
let _ints: (i16, i32, i64, i128) = assert_detokenize();
let _uints: (u16, u32, u64, u128) = assert_detokenize();
let _tuple: (Address, Vec<Vec<u8>>) = output();
let _vec_of_tuple: Vec<(Address, String)> = output();
let _vec_of_tuple_5: Vec<(Address, Vec<Vec<u8>>, String, U256, bool)> = output();
let _tuple: (Address, Vec<Vec<u8>>) = assert_detokenize();
let _vec_of_tuple: Vec<(Address, String)> = assert_detokenize();
let _vec_of_tuple_5: Vec<(Address, Vec<Vec<u8>>, String, U256, bool)> = assert_detokenize();
}
#[test]