feat: add struct parsing support for human readable ABI (#226)

* refactor: extract error module and use error macros

* feat: add solidity struct parser

* refactor: add AbiParse and support struct parsing

* test: add more struct parsing tests
This commit is contained in:
Matthias Seitz 2021-03-15 12:49:28 +01:00 committed by GitHub
parent e9e26f5e0c
commit cf8e2391c8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 1038 additions and 288 deletions

View File

@ -0,0 +1,25 @@
//! Boilerplate error definitions.
use thiserror::Error;
/// A type alias for std's Result with the Error as our error type.
pub type Result<T, E = ParseError> = std::result::Result<T, E>;
#[derive(Error, Debug)]
pub enum ParseError {
#[error("{0}")]
Message(String),
#[error(transparent)]
ParseError(#[from] super::Error),
}
macro_rules! _format_err {
($($tt:tt)*) => {
$crate::abi::ParseError::Message(format!($($tt)*))
};
}
pub(crate) use _format_err as format_err;
macro_rules! _bail {
($($tt:tt)*) => { return Err($crate::abi::error::format_err!($($tt)*)) };
}
pub(crate) use _bail as bail;

View File

@ -1,96 +1,171 @@
use std::collections::HashMap; use std::collections::{HashMap, VecDeque};
use thiserror::Error; use crate::abi::error::{bail, format_err, ParseError, Result};
use crate::abi::struct_def::{FieldType, StructFieldType};
use super::{ use crate::abi::{
param_type::Reader, Abi, Constructor, Event, EventParam, Function, Param, StateMutability, param_type::Reader, Abi, Constructor, Event, EventParam, Function, Param, ParamType, SolStruct,
StateMutability,
}; };
/// Parses a "human readable abi" string vector /// A parser that turns a "human readable abi" into a `Abi`
/// pub struct AbiParser {
/// ``` abi: Abi,
/// use ethers::abi::parse_abi; /// solidity structs
/// structs: HashMap<String, SolStruct>,
/// let abi = parse_abi(&[ /// solidity structs as tuples
/// "function x() external view returns (uint256)", struct_tuples: HashMap<String, Vec<ParamType>>,
/// ]).unwrap(); }
/// ```
pub fn parse(input: &[&str]) -> Result<Abi, ParseError> { impl AbiParser {
let mut abi = Abi { /// Parses a "human readable abi" string
pub fn parse_str(self, s: &str) -> Result<Abi> {
self.parse(&s.lines().collect::<Vec<_>>())
}
/// Parses a "human readable abi" string vector
///
/// # Example
/// ```
/// use ethers::abi::AbiParser;
///
/// let abi = AbiParser::default().parse(&[
/// "function x() external view returns (uint256)",
/// ]).unwrap();
/// ```
pub fn parse(mut self, input: &[&str]) -> Result<Abi> {
// parse struct first
let (structs, types): (Vec<_>, Vec<_>) = input
.iter()
.map(|s| escape_quotes(s))
.partition(|s| s.starts_with("struct"));
for sol in structs {
let s = SolStruct::parse(sol)?;
if self.structs.contains_key(s.name()) {
bail!("Duplicate struct declaration for struct `{}`", s.name())
}
self.structs.insert(s.name().to_string(), s);
}
self.substitute_structs()?;
for mut line in types {
line = line.trim_start();
if line.starts_with("function") {
let function = self.parse_function(&line)?;
self.abi
.functions
.entry(function.name.clone())
.or_default()
.push(function);
} else if line.starts_with("event") {
let event = self.parse_event(line)?;
self.abi
.events
.entry(event.name.clone())
.or_default()
.push(event);
} else if line.starts_with("constructor") {
self.abi.constructor = Some(self.parse_constructor(line)?);
} else {
bail!("Illegal abi `{}`", line)
}
}
Ok(self.abi)
}
/// Substitutes any other struct references within structs with tuples
fn substitute_structs(&mut self) -> Result<()> {
let mut unresolved = self.structs.keys().collect::<VecDeque<_>>();
let mut sequential_retries = 0;
while let Some(name) = unresolved.pop_front() {
let mut resolved = true;
let sol = &self.structs[name];
let mut tuple = Vec::with_capacity(sol.fields().len());
for field in sol.fields() {
match field.r#type() {
FieldType::Elementary(param) => tuple.push(param.clone()),
FieldType::Struct(ty) => {
if let Some(param) = self.struct_tuples.get(ty.name()).cloned() {
tuple.push(ParamType::Tuple(param))
} else {
resolved = false;
break;
}
}
FieldType::StructArray(ty) => {
if let Some(param) = self.struct_tuples.get(ty.name()).cloned() {
tuple.push(ParamType::Array(Box::new(ParamType::Tuple(param))))
} else {
resolved = false;
break;
}
}
FieldType::FixedStructArray(ty, size) => {
if let Some(param) = self.struct_tuples.get(ty.name()).cloned() {
tuple.push(ParamType::FixedArray(
Box::new(ParamType::Tuple(param)),
*size,
))
} else {
resolved = false;
break;
}
}
FieldType::Mapping(_) => {
bail!(
"mappings are not allowed as params in public functions of struct `{}`",
sol.name()
)
}
}
}
if resolved {
sequential_retries = 0;
self.struct_tuples.insert(sol.name().to_string(), tuple);
} else {
sequential_retries += 1;
if sequential_retries > unresolved.len() {
bail!("No struct definition found for struct `{}`", name)
}
unresolved.push_back(name);
}
}
Ok(())
}
/// Link additional structs for parsing
pub fn with_structs(structs: Vec<SolStruct>) -> Self {
Self {
abi: Abi {
constructor: None, constructor: None,
functions: HashMap::new(), functions: HashMap::new(),
events: HashMap::new(), events: HashMap::new(),
receive: false, receive: false,
fallback: false, fallback: false,
}; },
structs: structs
for mut line in input.iter().map(|s| escape_quotes(s)) { .into_iter()
line = line.trim_start(); .map(|s| (s.name().to_string(), s))
if line.starts_with("function") { .collect(),
let function = parse_function(&line)?; struct_tuples: HashMap::new(),
abi.functions
.entry(function.name.clone())
.or_default()
.push(function);
} else if line.starts_with("event") {
let event = parse_event(line)?;
abi.events
.entry(event.name.clone())
.or_default()
.push(event);
} else if line.starts_with("constructor") {
abi.constructor = Some(parse_constructor(line)?);
} else {
return Err(ParseError::ParseError(super::Error::InvalidData));
} }
} }
Ok(abi) /// Parses a solidity event declaration from `event <name> (args*) anonymous?`
} fn parse_event(&self, s: &str) -> Result<Event> {
let mut event = s.trim();
/// Parses an identifier like event or function name
fn parse_identifier(input: &mut &str) -> Result<String, ParseError> {
let mut chars = input.trim_start().chars();
let mut name = String::new();
let c = chars
.next()
.ok_or(ParseError::ParseError(super::Error::InvalidData))?;
if is_first_ident_char(c) {
name.push(c);
loop {
match chars.clone().next() {
Some(c) if is_ident_char(c) => {
chars.next();
name.push(c);
}
_ => break,
}
}
}
*input = chars.as_str();
Ok(name)
}
/// Parses a solidity event declaration from `event <name> (args*) anonymous?`
fn parse_event(mut event: &str) -> Result<Event, ParseError> {
event = event.trim();
if !event.starts_with("event ") { if !event.starts_with("event ") {
return Err(ParseError::ParseError(super::Error::InvalidData)); bail!("Not an event `{}`", s)
} }
event = &event[5..]; event = &event[5..];
let name = parse_identifier(&mut event)?; let name = parse_identifier(&mut event)?;
if name.is_empty() {
return Err(ParseError::ParseError(super::Error::InvalidName(
event.to_owned(),
)));
}
let mut chars = event.chars(); let mut chars = event.chars();
loop { loop {
match chars.next() { match chars.next() {
None => return Err(ParseError::ParseError(super::Error::InvalidData)), None => bail!("Expected event"),
Some('(') => { Some('(') => {
event = chars.as_str().trim(); event = chars.as_str().trim();
let mut anonymous = false; let mut anonymous = false;
@ -101,14 +176,14 @@ fn parse_event(mut event: &str) -> Result<Event, ParseError> {
event = event event = event
.trim() .trim()
.strip_suffix(')') .strip_suffix(')')
.ok_or(ParseError::ParseError(super::Error::InvalidData))?; .ok_or_else(|| format_err!("Expected closing `)` in `{}`", s))?;
let inputs = if event.is_empty() { let inputs = if event.is_empty() {
Vec::new() Vec::new()
} else { } else {
event event
.split(',') .split(',')
.map(parse_event_arg) .map(|e| self.parse_event_arg(e))
.collect::<Result<Vec<_>, _>>()? .collect::<Result<Vec<_>, _>>()?
}; };
return Ok(Event { return Ok(Event {
@ -120,68 +195,61 @@ fn parse_event(mut event: &str) -> Result<Event, ParseError> {
Some(' ') | Some('\t') => { Some(' ') | Some('\t') => {
continue; continue;
} }
_ => { Some(c) => {
return Err(ParseError::ParseError(super::Error::InvalidData)); bail!("Illegal char `{}` at `{}`", c, s)
}
} }
} }
} }
}
/// Parse a single event param /// Parse a single event param
fn parse_event_arg(input: &str) -> Result<EventParam, ParseError> { fn parse_event_arg(&self, input: &str) -> Result<EventParam> {
let mut iter = input.trim().rsplitn(3, is_whitespace); let mut iter = input.trim().rsplitn(3, is_whitespace);
let mut indexed = false; let mut indexed = false;
let mut name = iter let mut name = iter
.next() .next()
.ok_or(ParseError::ParseError(super::Error::InvalidData))?; .ok_or_else(|| format_err!("Empty event param at `{}`", input))?;
let type_str;
if let Some(mid) = iter.next() { if let Some(mid) = iter.next() {
let kind;
if let Some(ty) = iter.next() { if let Some(ty) = iter.next() {
if mid != "indexed" { if mid != "indexed" {
return Err(ParseError::ParseError(super::Error::InvalidData)); bail!("Expected indexed keyword at `{}`", input)
} }
indexed = true; indexed = true;
kind = Reader::read(ty)?; type_str = ty;
} else { } else {
if name == "indexed" { if name == "indexed" {
indexed = true; indexed = true;
name = ""; name = "";
} }
kind = Reader::read(mid)?; type_str = mid;
} }
Ok(EventParam {
name: name.to_owned(),
kind,
indexed,
})
} else { } else {
type_str = name;
name = "";
}
Ok(EventParam { Ok(EventParam {
name: "".to_owned(), name: name.to_string(),
indexed, indexed,
kind: Reader::read(name)?, kind: self.parse_type(type_str)?,
}) })
} }
}
fn parse_function(mut input: &str) -> Result<Function, ParseError> { fn parse_function(&mut self, s: &str) -> Result<Function> {
input = input.trim(); let mut input = s.trim();
if !input.starts_with("function ") { if !input.starts_with("function ") {
return Err(ParseError::ParseError(super::Error::InvalidData)); bail!("Not a function `{}`", input)
} }
input = &input[8..]; input = &input[8..];
let name = parse_identifier(&mut input)?; let name = parse_identifier(&mut input)?;
if name.is_empty() {
return Err(ParseError::ParseError(super::Error::InvalidName(
input.to_owned(),
)));
}
let mut iter = input.split(" returns"); let mut iter = input.split(" returns");
let parens = iter let parens = iter
.next() .next()
.ok_or(ParseError::ParseError(super::Error::InvalidData))? .ok_or_else(|| format_err!("Invalid function declaration at `{}`", s))?
.trim_end(); .trim_end();
let mut parens_iter = parens.rsplitn(2, ')'); let mut parens_iter = parens.rsplitn(2, ')');
@ -198,23 +266,15 @@ fn parse_function(mut input: &str) -> Result<Function, ParseError> {
.strip_prefix('(') .strip_prefix('(')
.ok_or(ParseError::ParseError(super::Error::InvalidData))?; .ok_or(ParseError::ParseError(super::Error::InvalidData))?;
let inputs = input_params let inputs = self.parse_params(input_params)?;
.split(',')
.filter(|s| !s.is_empty())
.map(parse_param)
.collect::<Result<Vec<_>, _>>()?;
let outputs = if let Some(params) = iter.next() { let outputs = if let Some(params) = iter.next() {
let params = params let params = params
.trim() .trim()
.strip_prefix('(') .strip_prefix('(')
.and_then(|s| s.strip_suffix(')')) .and_then(|s| s.strip_suffix(')'))
.ok_or(ParseError::ParseError(super::Error::InvalidData))?; .ok_or_else(|| format_err!("Expected parentheses at `{}`", s))?;
params self.parse_params(params)?
.split(',')
.filter(|s| !s.is_empty())
.map(parse_param)
.collect::<Result<Vec<_>, _>>()?
} else { } else {
Vec::new() Vec::new()
}; };
@ -229,30 +289,135 @@ fn parse_function(mut input: &str) -> Result<Function, ParseError> {
state_mutability, state_mutability,
constant: false, constant: false,
}) })
} }
fn parse_constructor(mut input: &str) -> Result<Constructor, ParseError> { fn parse_params(&self, s: &str) -> Result<Vec<Param>> {
input = input.trim(); s.split(',')
.filter(|s| !s.is_empty())
.map(|s| self.parse_param(s))
.collect::<Result<Vec<_>, _>>()
}
fn parse_type(&self, type_str: &str) -> Result<ParamType> {
if let Ok(kind) = Reader::read(type_str) {
Ok(kind)
} else {
// try struct instead
if let Ok(field) = StructFieldType::parse(type_str) {
let struct_ty = field
.as_struct()
.ok_or_else(|| format_err!("Expected struct type `{}`", type_str))?;
let tuple = self
.struct_tuples
.get(struct_ty.name())
.cloned()
.map(ParamType::Tuple)
.ok_or_else(|| format_err!("Unknown struct `{}`", struct_ty.name()))?;
match field {
FieldType::Struct(_) => Ok(tuple),
FieldType::StructArray(_) => Ok(ParamType::Array(Box::new(tuple))),
FieldType::FixedStructArray(_, size) => {
Ok(ParamType::FixedArray(Box::new(tuple), size))
}
_ => bail!("Expected struct type"),
}
} else {
bail!("Failed determine event type `{}`", type_str)
}
}
}
fn parse_constructor(&self, s: &str) -> Result<Constructor> {
let mut input = s.trim();
if !input.starts_with("constructor") { if !input.starts_with("constructor") {
return Err(ParseError::ParseError(super::Error::InvalidData)); bail!("Not a constructor `{}`", input)
} }
input = input[11..] input = input[11..]
.trim_start() .trim_start()
.strip_prefix('(') .strip_prefix('(')
.ok_or(ParseError::ParseError(super::Error::InvalidData))?; .ok_or_else(|| format_err!("Expected leading `(` in `{}`", s))?;
let params = input let params = input
.rsplitn(2, ')') .rsplitn(2, ')')
.last() .last()
.ok_or(ParseError::ParseError(super::Error::InvalidData))?; .ok_or_else(|| format_err!("Expected closing `)` in `{}`", s))?;
let inputs = params let inputs = self.parse_params(params)?;
.split(',')
.filter(|s| !s.is_empty())
.map(parse_param)
.collect::<Result<Vec<_>, _>>()?;
Ok(Constructor { inputs }) Ok(Constructor { inputs })
}
fn parse_param(&self, param: &str) -> Result<Param> {
let mut iter = param.trim().rsplitn(3, is_whitespace);
let mut name = iter
.next()
.ok_or(ParseError::ParseError(super::Error::InvalidData))?;
let type_str;
if let Some(ty) = iter.last() {
if name == "memory" || name == "calldata" {
name = "";
}
type_str = ty;
} else {
type_str = name;
name = "";
}
Ok(Param {
name: name.to_string(),
kind: self.parse_type(type_str)?,
})
}
}
impl Default for AbiParser {
fn default() -> Self {
Self::with_structs(Vec::new())
}
}
/// Parses a "human readable abi" string vector
///
/// ```
/// use ethers::abi::parse_abi;
///
/// let abi = parse_abi(&[
/// "function x() external view returns (uint256)",
/// ]).unwrap();
/// ```
pub fn parse(input: &[&str]) -> Result<Abi> {
AbiParser::default().parse(input)
}
/// Parses an identifier like event or function name
pub(crate) fn parse_identifier(input: &mut &str) -> Result<String> {
let mut chars = input.trim_start().chars();
let mut name = String::new();
let c = chars
.next()
.ok_or_else(|| format_err!("Empty identifier in `{}`", input))?;
if is_first_ident_char(c) {
name.push(c);
loop {
match chars.clone().next() {
Some(c) if is_ident_char(c) => {
chars.next();
name.push(c);
}
_ => break,
}
}
}
if name.is_empty() {
return Err(ParseError::ParseError(super::Error::InvalidName(
input.to_string(),
)));
}
*input = chars.as_str();
Ok(name)
} }
fn detect_state_mutability(s: &str) -> StateMutability { fn detect_state_mutability(s: &str) -> StateMutability {
@ -267,42 +432,15 @@ fn detect_state_mutability(s: &str) -> StateMutability {
} }
} }
fn parse_param(param: &str) -> Result<Param, ParseError> { pub(crate) fn is_first_ident_char(c: char) -> bool {
let mut iter = param.trim().rsplitn(3, is_whitespace);
let name = iter
.next()
.ok_or(ParseError::ParseError(super::Error::InvalidData))?;
if let Some(ty) = iter.last() {
if name == "memory" || name == "calldata" {
Ok(Param {
name: "".to_owned(),
kind: Reader::read(ty)?,
})
} else {
Ok(Param {
name: name.to_owned(),
kind: Reader::read(ty)?,
})
}
} else {
Ok(Param {
name: "".to_owned(),
kind: Reader::read(name)?,
})
}
}
fn is_first_ident_char(c: char) -> bool {
matches!(c, 'a'..='z' | 'A'..='Z' | '_') matches!(c, 'a'..='z' | 'A'..='Z' | '_')
} }
fn is_ident_char(c: char) -> bool { pub(crate) fn is_ident_char(c: char) -> bool {
matches!(c, 'a'..='z' | 'A'..='Z' | '0'..='9' | '_') matches!(c, 'a'..='z' | 'A'..='Z' | '0'..='9' | '_')
} }
fn is_whitespace(c: char) -> bool { pub(crate) fn is_whitespace(c: char) -> bool {
matches!(c, ' ' | '\t') matches!(c, ' ' | '\t')
} }
@ -310,24 +448,14 @@ fn escape_quotes(input: &str) -> &str {
input.trim_matches(is_whitespace).trim_matches('\"') input.trim_matches(is_whitespace).trim_matches('\"')
} }
#[derive(Error, Debug)]
pub enum ParseError {
#[error("expected data type")]
Kind,
#[error(transparent)]
ParseError(#[from] super::Error),
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use super::*;
use crate::abi::ParamType;
#[test] #[test]
fn parses_approve() { fn parses_approve() {
let fn_str = "function approve(address _spender, uint256 value) external returns(bool)"; let fn_str = "function approve(address _spender, uint256 value) external returns(bool)";
let parsed = parse_function(fn_str).unwrap(); let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.name, "approve"); assert_eq!(parsed.name, "approve");
assert_eq!(parsed.inputs[0].name, "_spender"); assert_eq!(parsed.inputs[0].name, "_spender");
assert_eq!(parsed.inputs[0].kind, ParamType::Address,); assert_eq!(parsed.inputs[0].kind, ParamType::Address,);
@ -340,7 +468,7 @@ mod tests {
#[test] #[test]
fn parses_function_arguments_return() { fn parses_function_arguments_return() {
let fn_str = "function foo(uint32[] memory x) external view returns (address)"; let fn_str = "function foo(uint32[] memory x) external view returns (address)";
let parsed = parse_function(fn_str).unwrap(); let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.name, "foo"); assert_eq!(parsed.name, "foo");
assert_eq!(parsed.inputs[0].name, "x"); assert_eq!(parsed.inputs[0].name, "x");
assert_eq!( assert_eq!(
@ -354,7 +482,7 @@ mod tests {
#[test] #[test]
fn parses_function_empty() { fn parses_function_empty() {
let fn_str = "function foo()"; let fn_str = "function foo()";
let parsed = parse_function(fn_str).unwrap(); let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.name, "foo"); assert_eq!(parsed.name, "foo");
assert!(parsed.inputs.is_empty()); assert!(parsed.inputs.is_empty());
assert!(parsed.outputs.is_empty()); assert!(parsed.outputs.is_empty());
@ -363,44 +491,46 @@ mod tests {
#[test] #[test]
fn parses_function_payable() { fn parses_function_payable() {
let fn_str = "function foo() public payable"; let fn_str = "function foo() public payable";
let parsed = parse_function(fn_str).unwrap(); let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.state_mutability, StateMutability::Payable); assert_eq!(parsed.state_mutability, StateMutability::Payable);
} }
#[test] #[test]
fn parses_function_view() { fn parses_function_view() {
let fn_str = "function foo() external view"; let fn_str = "function foo() external view";
let parsed = parse_function(fn_str).unwrap(); let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.state_mutability, StateMutability::View); assert_eq!(parsed.state_mutability, StateMutability::View);
} }
#[test] #[test]
fn parses_function_pure() { fn parses_function_pure() {
let fn_str = "function foo() pure"; let fn_str = "function foo() pure";
let parsed = parse_function(fn_str).unwrap(); let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.state_mutability, StateMutability::Pure); assert_eq!(parsed.state_mutability, StateMutability::Pure);
} }
#[test] #[test]
fn parses_event() { fn parses_event() {
assert_eq!( assert_eq!(
parse_event(&mut "event Foo (address indexed x, uint y, bytes32[] z)").unwrap(), AbiParser::default()
.parse_event(&mut "event Foo (address indexed x, uint y, bytes32[] z)")
.unwrap(),
Event { Event {
anonymous: false, anonymous: false,
name: "Foo".to_owned(), name: "Foo".to_string(),
inputs: vec![ inputs: vec![
EventParam { EventParam {
name: "x".to_owned(), name: "x".to_string(),
kind: ParamType::Address, kind: ParamType::Address,
indexed: true, indexed: true,
}, },
EventParam { EventParam {
name: "y".to_owned(), name: "y".to_string(),
kind: ParamType::Uint(256), kind: ParamType::Uint(256),
indexed: false, indexed: false,
}, },
EventParam { EventParam {
name: "z".to_owned(), name: "z".to_string(),
kind: ParamType::Array(Box::new(ParamType::FixedBytes(32))), kind: ParamType::Array(Box::new(ParamType::FixedBytes(32))),
indexed: false, indexed: false,
}, },
@ -412,10 +542,12 @@ mod tests {
#[test] #[test]
fn parses_anonymous_event() { fn parses_anonymous_event() {
assert_eq!( assert_eq!(
parse_event(&mut "event Foo() anonymous").unwrap(), AbiParser::default()
.parse_event(&mut "event Foo() anonymous")
.unwrap(),
Event { Event {
anonymous: true, anonymous: true,
name: "Foo".to_owned(), name: "Foo".to_string(),
inputs: vec![], inputs: vec![],
} }
); );
@ -424,12 +556,14 @@ mod tests {
#[test] #[test]
fn parses_unnamed_event() { fn parses_unnamed_event() {
assert_eq!( assert_eq!(
parse_event(&mut "event Foo(address)").unwrap(), AbiParser::default()
.parse_event(&mut "event Foo(address)")
.unwrap(),
Event { Event {
anonymous: false, anonymous: false,
name: "Foo".to_owned(), name: "Foo".to_string(),
inputs: vec![EventParam { inputs: vec![EventParam {
name: "".to_owned(), name: "".to_string(),
kind: ParamType::Address, kind: ParamType::Address,
indexed: false, indexed: false,
}], }],
@ -440,12 +574,14 @@ mod tests {
#[test] #[test]
fn parses_unnamed_indexed_event() { fn parses_unnamed_indexed_event() {
assert_eq!( assert_eq!(
parse_event(&mut "event Foo(address indexed)").unwrap(), AbiParser::default()
.parse_event(&mut "event Foo(address indexed)")
.unwrap(),
Event { Event {
anonymous: false, anonymous: false,
name: "Foo".to_owned(), name: "Foo".to_string(),
inputs: vec![EventParam { inputs: vec![EventParam {
name: "".to_owned(), name: "".to_string(),
kind: ParamType::Address, kind: ParamType::Address,
indexed: true, indexed: true,
}], }],
@ -456,18 +592,20 @@ mod tests {
#[test] #[test]
fn parse_event_input() { fn parse_event_input() {
assert_eq!( assert_eq!(
parse_event_arg("address indexed x").unwrap(), AbiParser::default()
.parse_event_arg("address indexed x")
.unwrap(),
EventParam { EventParam {
name: "x".to_owned(), name: "x".to_string(),
kind: ParamType::Address, kind: ParamType::Address,
indexed: true, indexed: true,
} }
); );
assert_eq!( assert_eq!(
parse_event_arg("address x").unwrap(), AbiParser::default().parse_event_arg("address x").unwrap(),
EventParam { EventParam {
name: "x".to_owned(), name: "x".to_string(),
kind: ParamType::Address, kind: ParamType::Address,
indexed: false, indexed: false,
} }
@ -486,10 +624,24 @@ mod tests {
] ]
.iter() .iter()
.for_each(|x| { .for_each(|x| {
parse_function(x).unwrap(); AbiParser::default().parse_function(x).unwrap();
}); });
} }
#[test]
fn can_parse_structs_and_functions() {
let abi = &[
"struct Demo {bytes x; address payable d;}",
"struct Voter { uint weight; bool voted; address delegate; uint vote; }",
"event FireEvent(Voter v, NestedVoter2 n)",
"function foo(uint256[] memory x) external view returns (address)",
"function call(Voter memory voter) returns (address, uint256)",
"struct NestedVoter { Voter voter; bool voted; address delegate; uint vote; }",
"struct NestedVoter2 { NestedVoter[] voter; Voter[10] votes; address delegate; uint vote; }",
];
parse(abi).unwrap();
}
#[test] #[test]
fn can_parse_params() { fn can_parse_params() {
[ [
@ -502,7 +654,7 @@ mod tests {
] ]
.iter() .iter()
.for_each(|x| { .for_each(|x| {
parse_param(x).unwrap(); AbiParser::default().parse_param(x).unwrap();
}); });
} }
@ -514,4 +666,95 @@ mod tests {
]) ])
.unwrap(); .unwrap();
} }
#[test]
fn can_substitute_structs() {
let abi = parse(&[
"struct MyStruct {int y; address _addr;}",
"event FireEvent(MyStruct m, address indexed newOwner)",
])
.unwrap();
assert_eq!(
abi.events["FireEvent"][0].inputs.clone(),
vec![
EventParam {
name: "m".to_string(),
kind: ParamType::Tuple(vec![ParamType::Int(256), ParamType::Address]),
indexed: false
},
EventParam {
name: "newOwner".to_string(),
kind: ParamType::Address,
indexed: true
},
]
);
}
#[test]
fn can_substitute_array_structs() {
let abi = parse(&[
"struct MyStruct {int y; address _addr;}",
"event FireEvent(MyStruct[] m, MyStruct[10] m2)",
])
.unwrap();
assert_eq!(
abi.events["FireEvent"][0].inputs.clone(),
vec![
EventParam {
name: "m".to_string(),
kind: ParamType::Array(Box::new(ParamType::Tuple(vec![
ParamType::Int(256),
ParamType::Address
]))),
indexed: false
},
EventParam {
name: "m2".to_string(),
kind: ParamType::FixedArray(
Box::new(ParamType::Tuple(vec![
ParamType::Int(256),
ParamType::Address
])),
10
),
indexed: false
},
]
);
}
#[test]
fn can_substitute_nested_array_structs() {
let abi = parse(&[
"struct MyStruct {int y; address _addr;}",
"event FireEvent(MyStruct[] m, MyStructWrapper w)",
"struct MyStructWrapper {MyStruct y; int y; address _addr;}",
])
.unwrap();
assert_eq!(
abi.events["FireEvent"][0].inputs.clone(),
vec![
EventParam {
name: "m".to_string(),
kind: ParamType::Array(Box::new(ParamType::Tuple(vec![
ParamType::Int(256),
ParamType::Address
]))),
indexed: false
},
EventParam {
name: "w".to_string(),
kind: ParamType::Tuple(vec![
ParamType::Tuple(vec![ParamType::Int(256), ParamType::Address]),
ParamType::Int(256),
ParamType::Address
]),
indexed: false
},
]
);
}
} }

View File

@ -8,8 +8,14 @@ pub use ethabi::*;
mod tokens; mod tokens;
pub use tokens::{Detokenize, InvalidOutputType, Tokenizable, TokenizableItem, Tokenize}; pub use tokens::{Detokenize, InvalidOutputType, Tokenizable, TokenizableItem, Tokenize};
pub mod struct_def;
pub use struct_def::SolStruct;
mod error;
pub use error::ParseError;
mod human_readable; mod human_readable;
pub use human_readable::{parse as parse_abi, ParseError}; pub use human_readable::{parse as parse_abi, AbiParser};
/// Extension trait for `ethabi::Function`. /// Extension trait for `ethabi::Function`.
pub trait FunctionExt { pub trait FunctionExt {

View File

@ -0,0 +1,476 @@
//! Solidity struct definition parsing support
use crate::abi::error::{bail, format_err, Result};
use crate::abi::human_readable::{is_whitespace, parse_identifier};
use crate::abi::{param_type::Reader, ParamType};
/// A field declaration inside a struct
#[derive(Debug, Clone, PartialEq)]
pub struct FieldDeclaration {
name: String,
ty: FieldType,
}
impl FieldDeclaration {
pub fn name(&self) -> &str {
&self.name
}
pub fn r#type(&self) -> &FieldType {
&self.ty
}
}
/// A field declaration inside a struct
#[derive(Debug, Clone, PartialEq)]
pub enum FieldType {
/// Represents elementary types, see [`ParamType`]
Elementary(ParamType),
/// A non elementary type field, treated as user defined struct
Struct(StructFieldType),
// Array of user defined type
StructArray(StructFieldType),
// Array with fixed size of user defined type
FixedStructArray(StructFieldType, usize),
/// Mapping
Mapping(Box<MappingType>),
}
impl FieldType {
pub fn is_mapping(&self) -> bool {
matches!(self, FieldType::Mapping(_))
}
pub(crate) fn as_struct(&self) -> Option<&StructFieldType> {
match self {
FieldType::Struct(s)
| FieldType::StructArray(s)
| FieldType::FixedStructArray(s, _) => Some(s),
_ => None,
}
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct MappingType {
/// key types can be elementary and `bytes` and `string`
///
/// Valid `ParamType` variants are:
/// `Address`, `Bytes`, `Int`, `UInt`, `Bool`, `String`, `FixedBytes`,
key_type: ParamType,
/// The value type of this mapping
value_type: FieldType,
}
/// Represents a elementary field declaration inside a struct with a : `int x`
#[derive(Debug, Clone, PartialEq)]
pub struct StructFieldDeclaration {
/// The name of the field
name: String,
/// The type of the field
ty: StructFieldType,
}
/// How the type of a struct field is referenced
#[derive(Debug, Clone, PartialEq)]
pub struct StructFieldType {
/// The name of the struct
name: String,
/// All previous projections up until the name
///
/// For `MostOuter.Outer.<name>` this is `vec!["MostOuter", "Outer"]`
projections: Vec<String>,
}
impl StructFieldType {
pub fn name(&self) -> &str {
&self.name
}
/// Parse a struct field declaration
///
/// The parsed field is either a `Struct`, `StructArray` or `FixedStructArray`
pub fn parse(mut input: &str) -> Result<FieldType> {
let mut projections = Vec::new();
loop {
let ty = parse_identifier(&mut input)?;
let mut chars = input.chars();
match chars.next() {
None => {
return Ok(FieldType::Struct(StructFieldType {
name: ty,
projections,
}))
}
Some(' ') | Some('\t') | Some('[') => {
// array
let mut size = String::new();
loop {
match chars.next() {
None => bail!("Expected Array `{}`", input),
Some(' ') | Some('\t') => {
if !size.is_empty() {
bail!(
"Illegal whitespace in array size after `{}` in `{}`",
size,
input
)
}
}
Some(']') => {
let ty = StructFieldType {
name: ty,
projections,
};
return if size.is_empty() {
Ok(FieldType::StructArray(ty))
} else {
let size = size.parse().map_err(|_| {
format_err!("Illegal array size `{}` at `{}`", size, input)
})?;
Ok(FieldType::FixedStructArray(ty, size))
};
}
Some(c) => {
if c.is_numeric() {
size.push(c);
} else {
bail!("Illegal char `{}` inner array `{}`", c, input)
}
}
}
}
}
Some('.') => {
input = chars.as_str();
projections.push(ty);
}
Some(c) => {
bail!("Illegal char `{}` at `{}`", c, input)
}
}
}
}
}
/// Represents a solidity struct
#[derive(Debug, Clone, PartialEq)]
pub struct SolStruct {
name: String,
fields: Vec<FieldDeclaration>,
}
impl SolStruct {
/// Parse a solidity struct definition
///
/// # Example
///
/// ```
/// # use ethers::abi::SolStruct;
/// let s = SolStruct::parse("struct MyStruct { uint x; uint y;}").unwrap();
/// ```
pub fn parse(s: &str) -> Result<Self> {
let mut input = s.trim();
if !input.starts_with("struct ") {
bail!("Not a struct `{}`", input)
}
input = &input[6..];
let name = parse_identifier(&mut input)?;
let mut chars = input.chars();
loop {
match chars.next() {
None => bail!("Expected struct"),
Some('{') => {
// strip opening and trailing curly bracket
input = chars
.as_str()
.trim()
.strip_suffix('}')
.ok_or_else(|| format_err!("Expected closing `}}` in `{}`", s))?
.trim_end();
let fields = if input.is_empty() {
Vec::new()
} else {
input
.split(';')
.filter(|s| !s.is_empty())
.map(parse_struct_field)
.collect::<Result<Vec<_>, _>>()?
};
return Ok(SolStruct { name, fields });
}
Some(' ') | Some('\t') => {
continue;
}
Some(c) => {
bail!("Illegal char `{}` at `{}`", c, s)
}
}
}
}
/// Name of this struct
pub fn name(&self) -> &str {
&self.name
}
/// All the fields of this struct
pub fn fields(&self) -> &Vec<FieldDeclaration> {
&self.fields
}
}
/// Strips the identifier of field declaration from the input and returns it
fn strip_field_identifier(input: &mut &str) -> Result<String> {
let mut iter = input.trim_end().rsplitn(2, is_whitespace);
let name = iter
.next()
.ok_or_else(|| format_err!("Expected field identifier"))
.map(|mut s| parse_identifier(&mut s))??;
*input = iter
.next()
.ok_or_else(|| format_err!("Expected field type in `{}`", input))?
.trim_end();
Ok(name)
}
/// Parses a field definition such as `<type> <storageLocation>? <name>`
fn parse_struct_field(s: &str) -> Result<FieldDeclaration> {
let mut input = s.trim_start();
if !input.starts_with("mapping") {
// strip potential defaults
input = input
.split('=')
.next()
.ok_or_else(|| format_err!("Expected field definition `{}`", s))?
.trim_end();
}
let name = strip_field_identifier(&mut input)?;
Ok(FieldDeclaration {
name,
ty: parse_field_type(input)?,
})
}
fn parse_field_type(s: &str) -> Result<FieldType> {
let mut input = s.trim_start();
if input.starts_with("mapping") {
return Ok(FieldType::Mapping(Box::new(parse_mapping(input)?)));
}
if input.ends_with(" payable") {
// special case for `address payable`
input = input[..input.len() - 7].trim_end();
}
if let Ok(ty) = Reader::read(input) {
Ok(FieldType::Elementary(ty))
} else {
// parsing elementary datatype failed, try struct
StructFieldType::parse(input.trim_end())
}
}
/// parse a mapping declaration
fn parse_mapping(s: &str) -> Result<MappingType> {
let mut input = s.trim();
if !input.starts_with("mapping") {
bail!("Not a mapping `{}`", input)
}
input = &input[7..].trim_start();
let mut iter = input
.trim_start_matches('(')
.trim_end_matches(')')
.splitn(2, "=>");
let key_type = iter
.next()
.ok_or_else(|| format_err!("Expected mapping key type at `{}`", input))
.map(str::trim)
.map(Reader::read)??;
if let ParamType::Array(_) | ParamType::FixedArray(_, _) | ParamType::Tuple(_) = &key_type {
bail!(
"Expected elementary mapping key type at `{}` got {:?}",
input,
key_type
)
}
let value_type = iter
.next()
.ok_or_else(|| format_err!("Expected mapping value type at `{}`", input))
.map(str::trim)
.map(parse_field_type)??;
Ok(MappingType {
key_type,
value_type,
})
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn can_parse_simple_struct() {
assert_eq!(
SolStruct::parse("struct MyStruct{uint256 x; uint256 y;}").unwrap(),
SolStruct {
name: "MyStruct".to_string(),
fields: vec![
FieldDeclaration {
name: "x".to_string(),
ty: FieldType::Elementary(ParamType::Uint(256)),
},
FieldDeclaration {
name: "y".to_string(),
ty: FieldType::Elementary(ParamType::Uint(256)),
},
],
}
);
}
#[test]
fn can_parse_struct() {
assert_eq!(
SolStruct::parse("struct MyStruct{uint256 x; uint256 y; bytes[] _b; string[10] s; mapping(address => uint256) m;}").unwrap(),
SolStruct {
name: "MyStruct".to_string(),
fields: vec![
FieldDeclaration {
name: "x".to_string(),
ty: FieldType::Elementary(ParamType::Uint(256)),
},
FieldDeclaration {
name: "y".to_string(),
ty: FieldType::Elementary(ParamType::Uint(256)),
},
FieldDeclaration {
name: "_b".to_string(),
ty: FieldType::Elementary(ParamType::Array(Box::new(ParamType::Bytes))),
},
FieldDeclaration {
name: "s".to_string(),
ty: FieldType::Elementary(ParamType::FixedArray(Box::new(ParamType::String), 10)),
},
FieldDeclaration {
name: "m".to_string(),
ty: FieldType::Mapping(Box::new(
MappingType {
key_type: ParamType::Address,
value_type: FieldType::Elementary(ParamType::Uint(256))
}
)),
},
],
}
);
}
#[test]
fn can_parse_struct_projections() {
assert_eq!(
SolStruct::parse("struct MyStruct{uint256 x; Some.Other.Inner _other;}").unwrap(),
SolStruct {
name: "MyStruct".to_string(),
fields: vec![
FieldDeclaration {
name: "x".to_string(),
ty: FieldType::Elementary(ParamType::Uint(256)),
},
FieldDeclaration {
name: "_other".to_string(),
ty: FieldType::Struct(StructFieldType {
name: "Inner".to_string(),
projections: vec!["Some".to_string(), "Other".to_string()]
}),
},
],
}
);
}
#[test]
fn can_parse_structs() {
[
"struct Demo {bytes x; address payable d;}",
"struct Demo2 {bytes[10] x; mapping(bool=> bool) d; int256 value;}",
"struct Struct { Other.MyStruct s; bool voted; address delegate; uint vote; }",
]
.iter()
.for_each(|s| {
SolStruct::parse(s).unwrap();
});
}
#[test]
fn can_parse_mapping_type() {
assert_eq!(
parse_mapping("mapping(string=> string)").unwrap(),
MappingType {
key_type: ParamType::String,
value_type: FieldType::Elementary(ParamType::String)
}
);
}
#[test]
fn can_parse_nested_mappings() {
assert_eq!(
parse_mapping("mapping(string=> mapping(string=> string))").unwrap(),
MappingType {
key_type: ParamType::String,
value_type: FieldType::Mapping(Box::new(MappingType {
key_type: ParamType::String,
value_type: FieldType::Elementary(ParamType::String),
})),
}
);
}
#[test]
fn can_detect_illegal_mappings_key_type() {
[
"mapping(string[]=> mapping(string=> string))",
"mapping(bytes[10] => bool)",
"mapping(uint256[10] => bool)",
"mapping(Item=> bool)",
"mapping(Item[]=> mapping(address => bool))",
]
.iter()
.for_each(|s| {
assert!(parse_mapping(s).is_err());
});
}
#[test]
fn can_parse_mappings() {
[
"mapping(string=> mapping(string=> string))",
"mapping(string=> mapping(string=> mapping(string=> mapping(string=> string))))",
"mapping(bool=> bool)",
"mapping(bytes32 => bool)",
"mapping(bytes=> bool)",
"mapping(uint256=> mapping(address => bool))",
]
.iter()
.for_each(|s| {
parse_mapping(s).unwrap();
});
}
#[test]
fn can_strip_field_ident() {
let mut s = "uint256 _myvar,
";
let name = strip_field_identifier(&mut s).unwrap();
assert_eq!("_myvar", name);
assert_eq!("uint256", s);
}
}