ethers-rs/ethers-core/src/abi/human_readable.rs

847 lines
29 KiB
Rust
Raw Normal View History

use std::collections::{BTreeMap, HashMap, VecDeque};
use crate::abi::{
error::{bail, format_err, ParseError, Result},
param_type::Reader,
struct_def::{FieldType, StructFieldType},
Abi, Constructor, Event, EventParam, Function, Param, ParamType, SolStruct, StateMutability,
};
/// A parser that turns a "human readable abi" into a `Abi`
pub struct AbiParser {
/// solidity structs
pub structs: HashMap<String, SolStruct>,
/// solidity structs as tuples
pub struct_tuples: HashMap<String, Vec<ParamType>>,
/// (function name, param name) -> struct which are the identifying properties we get the name
/// from ethabi.
pub function_params: HashMap<(String, String), String>,
/// (function name) -> Vec<structs> all structs the function returns
pub outputs: HashMap<String, Vec<String>>,
}
impl AbiParser {
/// Parses a "human readable abi" string
///
/// # Example
///
/// ```
/// # use ethers_core::abi::AbiParser;
/// let abi = AbiParser::default().parse_str(r#"[
/// function setValue(string)
/// function getValue() external view returns (string)
/// event ValueChanged(address indexed author, string oldValue, string newValue)
/// ]"#).unwrap();
/// ```
pub fn parse_str(&mut self, s: &str) -> Result<Abi> {
self.parse(
&s.trim().trim_start_matches('[').trim_end_matches(']').lines().collect::<Vec<_>>(),
)
}
/// Parses a "human readable abi" string vector
///
/// # Example
/// ```
/// use ethers_core::abi::AbiParser;
///
/// let abi = AbiParser::default().parse(&[
/// "function x() external view returns (uint256)",
/// ]).unwrap();
/// ```
pub fn parse(&mut self, input: &[&str]) -> Result<Abi> {
// parse struct first
let mut abi = Abi {
constructor: None,
functions: BTreeMap::new(),
events: BTreeMap::new(),
errors: BTreeMap::new(),
receive: false,
fallback: false,
};
let (structs, types): (Vec<_>, Vec<_>) = input
.iter()
.map(|s| escape_quotes(s))
.map(str::trim)
.filter(|s| !s.is_empty())
.partition(|s| s.starts_with("struct"));
for sol in structs {
let s = SolStruct::parse(sol)?;
if self.structs.contains_key(s.name()) {
bail!("Duplicate struct declaration for struct `{}`", s.name())
}
self.structs.insert(s.name().to_string(), s);
}
self.substitute_structs()?;
for mut line in types {
line = line.trim_start();
if line.starts_with("event") {
let event = self.parse_event(line)?;
abi.events.entry(event.name.clone()).or_default().push(event);
} else if line.starts_with("constructor") {
let inputs = self
.constructor_inputs(line)?
.into_iter()
.map(|(input, struct_name)| {
if let Some(struct_name) = struct_name {
// keep track of the user defined struct of that param
self.function_params.insert(
("constructor".to_string(), input.name.clone()),
struct_name,
);
}
input
})
.collect();
abi.constructor = Some(Constructor { inputs });
} else {
// function may have shorthand declaration, so it won't start with "function"
let function = match self.parse_function(line) {
Ok(function) => function,
Err(_) => bail!("Illegal abi `{}`", line),
};
abi.functions.entry(function.name.clone()).or_default().push(function);
}
}
Ok(abi)
}
/// Substitutes any other struct references within structs with tuples
fn substitute_structs(&mut self) -> Result<()> {
let mut unresolved = self.structs.keys().collect::<VecDeque<_>>();
let mut sequential_retries = 0;
while let Some(name) = unresolved.pop_front() {
let mut resolved = true;
let sol = &self.structs[name];
let mut tuple = Vec::with_capacity(sol.fields().len());
for field in sol.fields() {
match field.r#type() {
FieldType::Elementary(param) => tuple.push(param.clone()),
FieldType::Struct(ty) => {
if let Some(param) = self.struct_tuples.get(ty.name()).cloned() {
tuple.push(ty.as_param(ParamType::Tuple(param)))
} else {
resolved = false;
break
}
}
FieldType::Mapping(_) => {
bail!(
"mappings are not allowed as params in public functions of struct `{}`",
sol.name()
)
}
}
}
if resolved {
sequential_retries = 0;
self.struct_tuples.insert(sol.name().to_string(), tuple);
} else {
sequential_retries += 1;
if sequential_retries > unresolved.len() {
bail!("No struct definition found for struct `{}`", name)
}
unresolved.push_back(name);
}
}
Ok(())
}
/// Link additional structs for parsing
pub fn with_structs(structs: Vec<SolStruct>) -> Self {
Self {
structs: structs.into_iter().map(|s| (s.name().to_string(), s)).collect(),
struct_tuples: HashMap::new(),
function_params: Default::default(),
outputs: Default::default(),
}
}
/// Parses a solidity event declaration from `event <name> (args*) anonymous?`
pub fn parse_event(&self, s: &str) -> Result<Event> {
let mut event = s.trim();
if !event.starts_with("event ") {
bail!("Not an event `{}`", s)
}
event = &event[5..];
let name = parse_identifier(&mut event)?;
let mut chars = event.chars();
loop {
match chars.next() {
None => bail!("Expected event"),
Some('(') => {
event = chars.as_str().trim();
let mut anonymous = false;
if event.ends_with("anonymous") {
anonymous = true;
event = event[..event.len() - 9].trim_end();
}
event = event
.trim()
.strip_suffix(')')
.ok_or_else(|| format_err!("Expected closing `)` in `{}`", s))?;
let inputs = if event.is_empty() {
Vec::new()
} else {
event
.split(',')
.map(|e| self.parse_event_arg(e))
.collect::<Result<Vec<_>, _>>()?
};
return Ok(Event { name, inputs, anonymous })
}
Some(' ') | Some('\t') => continue,
Some(c) => {
bail!("Illegal char `{}` at `{}`", c, s)
}
}
}
}
/// Parse a single event param
fn parse_event_arg(&self, input: &str) -> Result<EventParam> {
let mut iter = input.trim().rsplitn(3, is_whitespace);
let mut indexed = false;
let mut name =
iter.next().ok_or_else(|| format_err!("Empty event param at `{}`", input))?;
let type_str;
if let Some(mid) = iter.next() {
if let Some(ty) = iter.next() {
if mid != "indexed" {
bail!("Expected indexed keyword at `{}`", input)
}
indexed = true;
type_str = ty;
} else {
if name == "indexed" {
indexed = true;
name = "";
}
type_str = mid;
}
} else {
type_str = name;
name = "";
}
Ok(EventParam { name: name.to_string(), indexed, kind: self.parse_type(type_str)?.0 })
}
/// Returns the parsed function from the input string
///
/// # Example
///
/// ```
/// use ethers_core::abi::AbiParser;
/// let f = AbiParser::default()
/// .parse_function("bar(uint256 x, uint256 y, address addr)").unwrap();
/// ```
pub fn parse_function(&mut self, s: &str) -> Result<Function> {
let mut input = s.trim();
let shorthand = !input.starts_with("function ");
if !shorthand {
input = &input[8..];
}
let name = parse_identifier(&mut input)?;
input = input
.strip_prefix('(')
.ok_or_else(|| format_err!("Expected input args parentheses at `{}`", s))?;
let (input_args_modifiers, output_args) = match input.rsplit_once('(') {
Some((first, second)) => (first, Some(second)),
None => (input, None),
};
let mut input_args_modifiers_iter = input_args_modifiers
.trim_end()
.strip_suffix(" returns")
.unwrap_or(input_args_modifiers)
.splitn(2, ')');
let input_args = match input_args_modifiers_iter
.next()
.ok_or_else(|| format_err!("Expected input args parentheses at `{}`", s))?
{
"" => None,
input_params_args => Some(input_params_args),
};
let modifiers = match input_args_modifiers_iter
.next()
.ok_or_else(|| format_err!("Expected input args parentheses at `{}`", s))?
{
"" => None,
modifiers => Some(modifiers),
};
let inputs = if let Some(params) = input_args {
self.parse_params(params)?
.into_iter()
.map(|(input, struct_name)| {
if let Some(struct_name) = struct_name {
// keep track of the user defined struct of that param
self.function_params
.insert((name.clone(), input.name.clone()), struct_name);
}
input
})
.collect()
} else {
Vec::new()
};
let outputs = if let Some(params) = output_args {
let params = params
.trim()
.strip_suffix(')')
.ok_or_else(|| format_err!("Expected output args parentheses at `{}`", s))?;
let output_params = self.parse_params(params)?;
let mut outputs = Vec::with_capacity(output_params.len());
let mut output_types = Vec::new();
for (output, struct_name) in output_params {
if let Some(struct_name) = struct_name {
// keep track of the user defined struct of that param
output_types.push(struct_name);
}
outputs.push(output);
}
self.outputs.insert(name.clone(), output_types);
outputs
} else {
Vec::new()
};
let state_mutability = modifiers.map(detect_state_mutability).unwrap_or_default();
Ok(
#[allow(deprecated)]
2022-01-13 00:58:11 +00:00
Function { name, inputs, outputs, state_mutability, constant: None },
)
}
fn parse_params(&self, s: &str) -> Result<Vec<(Param, Option<String>)>> {
s.split(',')
.filter(|s| !s.is_empty())
.map(|s| self.parse_param(s))
.collect::<Result<Vec<_>, _>>()
}
/// Returns the `ethabi` `ParamType` for the function parameter and the aliased struct type, if
/// it is a user defined struct
///
/// **NOTE**: the `ethabi` Reader treats unknown identifiers as `UInt(8)`, because solc uses
/// the _name_ of a solidity enum for the value of the `type` of the ABI, but only in sol
/// libraries. If the enum is defined in a contract the value of the `type` is `uint8`
///
/// # Example ABI for an enum in a __contract__
/// ```json
/// {
/// "internalType": "enum ContractTest.TestEnum",
/// "name": "test",
/// "type": "uint8"
/// }
/// ```
///
/// # Example ABI for an enum in a __library__
/// ```json
/// {
/// "internalType": "enum ContractTest.TestEnum",
/// "name": "test",
/// "type": "ContractTest.TestEnum"
/// }
/// ```
///
/// See https://github.com/rust-ethereum/ethabi/issues/254
///
/// Therefore, we need to double-check if the `ethabi::Reader` parsed an `uint8`, and ignore the
/// type if `type_str` is not uint8. However can lead to some problems if a function param is
/// array of custom types for example, like `Foo[]`, which the `Reader` would identify as
/// `uint8[]`. Therefor if the `Reader` returns an `uint8` we also check that the input string
/// contains a `uint8`. This however can still lead to false detection of `uint8` and is only
/// solvable with a more sophisticated parser: https://github.com/gakonst/ethers-rs/issues/474
fn parse_type(&self, type_str: &str) -> Result<(ParamType, Option<String>)> {
if let Ok(kind) = Reader::read(type_str) {
if is_likely_tuple_not_uint8(&kind, type_str) {
// if we detected an `ParamType::Uint(8)` but the input string does not include a
// `uint8` then it's highly likely that we try parsing a struct instead
self.parse_struct_type(type_str)
} else {
Ok((kind, None))
}
} else {
// try struct instead
self.parse_struct_type(type_str)
}
}
/// Attempts to parse the `type_str` as a `struct`, resolving all fields of the struct into a
/// `ParamType::Tuple`
fn parse_struct_type(&self, type_str: &str) -> Result<(ParamType, Option<String>)> {
if let Ok(field) = StructFieldType::parse(type_str) {
let struct_ty = field
.as_struct()
.ok_or_else(|| format_err!("Expected struct type `{}`", type_str))?;
let name = struct_ty.name();
let tuple = self
.struct_tuples
.get(name)
.cloned()
.map(ParamType::Tuple)
.ok_or_else(|| format_err!("Unknown struct `{}`", struct_ty.name()))?;
if let Some(field) = field.as_struct() {
Ok((field.as_param(tuple), Some(name.to_string())))
} else {
bail!("Expected struct type")
}
} else {
bail!("Failed determine event type `{}`", type_str)
}
}
pub fn parse_constructor(&self, s: &str) -> Result<Constructor> {
let inputs = self.constructor_inputs(s)?.into_iter().map(|s| s.0).collect();
Ok(Constructor { inputs })
}
fn constructor_inputs(&self, s: &str) -> Result<Vec<(Param, Option<String>)>> {
let mut input = s.trim();
if !input.starts_with("constructor") {
bail!("Not a constructor `{}`", input)
}
input = input[11..]
.trim_start()
.strip_prefix('(')
.ok_or_else(|| format_err!("Expected leading `(` in `{}`", s))?;
let params = input
.rsplitn(2, ')')
.last()
.ok_or_else(|| format_err!("Expected closing `)` in `{}`", s))?;
self.parse_params(params)
}
fn parse_param(&self, param: &str) -> Result<(Param, Option<String>)> {
let mut iter = param.trim().rsplitn(3, is_whitespace);
let mut name = iter.next().ok_or(ParseError::ParseError(super::Error::InvalidData))?;
let type_str;
if let Some(ty) = iter.last() {
if name == "memory" || name == "calldata" {
name = "";
}
type_str = ty;
} else {
type_str = name;
name = "";
}
let (kind, user_struct) = self.parse_type(type_str)?;
Ok((Param { name: name.to_string(), kind, internal_type: None }, user_struct))
}
}
impl Default for AbiParser {
fn default() -> Self {
Self::with_structs(Vec::new())
}
}
/// Parses a "human readable abi" string vector
///
/// ```
/// use ethers_core::abi::parse_abi;
///
/// let abi = parse_abi(&[
/// "function x() external view returns (uint256)",
/// ]).unwrap();
/// ```
pub fn parse(input: &[&str]) -> Result<Abi> {
AbiParser::default().parse(input)
}
/// Parses a "human readable abi" string
///
/// See also `AbiParser::parse_str`
pub fn parse_str(input: &str) -> Result<Abi> {
AbiParser::default().parse_str(input)
}
/// Parses an identifier like event or function name
pub(crate) fn parse_identifier(input: &mut &str) -> Result<String> {
let mut chars = input.trim_start().chars();
let mut name = String::new();
let c = chars.next().ok_or_else(|| format_err!("Empty identifier in `{}`", input))?;
if is_first_ident_char(c) {
name.push(c);
loop {
match chars.clone().next() {
Some(c) if is_ident_char(c) => {
chars.next();
name.push(c);
}
_ => break,
}
}
}
if name.is_empty() {
return Err(ParseError::ParseError(super::Error::InvalidName(input.to_string())))
}
*input = chars.as_str();
Ok(name)
}
fn detect_state_mutability(s: &str) -> StateMutability {
if s.contains("pure") {
StateMutability::Pure
} else if s.contains("view") {
StateMutability::View
} else if s.contains("payable") {
StateMutability::Payable
} else {
StateMutability::NonPayable
}
}
/// Checks if the input `ParamType` contains a `uint8` that the `type_str` also contains `uint8`
///
/// Returns `true` if `kind` contains `uint8` but the type_str doesnt
///
/// See `AbiParser::parse_type`
pub(crate) fn is_likely_tuple_not_uint8(kind: &ParamType, type_str: &str) -> bool {
if contains_uint8(kind) {
!type_str.contains("uint8")
} else {
false
}
}
/// Returns true if the `ParamType` contains an `uint8`
pub fn contains_uint8(kind: &ParamType) -> bool {
match kind {
ParamType::Uint(8) => true,
ParamType::Array(kind) => contains_uint8(&*kind),
ParamType::FixedArray(kind, _) => contains_uint8(&*kind),
ParamType::Tuple(tuple) => tuple.iter().any(contains_uint8),
_ => false,
}
}
pub(crate) fn is_first_ident_char(c: char) -> bool {
matches!(c, 'a'..='z' | 'A'..='Z' | '_')
}
pub(crate) fn is_ident_char(c: char) -> bool {
matches!(c, 'a'..='z' | 'A'..='Z' | '0'..='9' | '_')
}
pub(crate) fn is_whitespace(c: char) -> bool {
matches!(c, ' ' | '\t')
}
fn escape_quotes(input: &str) -> &str {
input.trim_matches(is_whitespace).trim_matches('\"')
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn parses_approve() {
let fn_str = "function approve(address _spender, uint256 value) external returns(bool)";
let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.name, "approve");
assert_eq!(parsed.inputs[0].name, "_spender");
assert_eq!(parsed.inputs[0].kind, ParamType::Address,);
assert_eq!(parsed.inputs[1].name, "value");
assert_eq!(parsed.inputs[1].kind, ParamType::Uint(256),);
assert_eq!(parsed.outputs[0].name, "");
assert_eq!(parsed.outputs[0].kind, ParamType::Bool);
}
#[test]
fn parses_function_arguments_return() {
let fn_str = "function foo(uint32[] memory x) external view returns (address)";
let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.name, "foo");
assert_eq!(parsed.inputs[0].name, "x");
assert_eq!(parsed.inputs[0].kind, ParamType::Array(Box::new(ParamType::Uint(32))));
assert_eq!(parsed.outputs[0].name, "");
assert_eq!(parsed.outputs[0].kind, ParamType::Address);
}
#[test]
fn parses_function_empty() {
let fn_str = "function foo()";
let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.name, "foo");
assert!(parsed.inputs.is_empty());
assert!(parsed.outputs.is_empty());
}
#[test]
fn parses_function_payable() {
let fn_str = "function foo() public payable";
let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.state_mutability, StateMutability::Payable);
}
#[test]
fn parses_function_view() {
let fn_str = "function foo() external view";
let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.state_mutability, StateMutability::View);
}
#[test]
fn parses_function_pure() {
let fn_str = "function foo() pure";
let parsed = AbiParser::default().parse_function(fn_str).unwrap();
assert_eq!(parsed.state_mutability, StateMutability::Pure);
}
#[test]
fn parses_event() {
assert_eq!(
AbiParser::default()
2021-07-05 11:03:38 +00:00
.parse_event("event Foo (address indexed x, uint y, bytes32[] z)")
.unwrap(),
Event {
anonymous: false,
name: "Foo".to_string(),
inputs: vec![
EventParam { name: "x".to_string(), kind: ParamType::Address, indexed: true },
EventParam {
name: "y".to_string(),
kind: ParamType::Uint(256),
indexed: false,
},
EventParam {
name: "z".to_string(),
kind: ParamType::Array(Box::new(ParamType::FixedBytes(32))),
indexed: false,
},
],
}
);
}
#[test]
fn parses_anonymous_event() {
assert_eq!(
AbiParser::default().parse_event("event Foo() anonymous").unwrap(),
Event { anonymous: true, name: "Foo".to_string(), inputs: vec![] }
);
}
#[test]
fn parses_unnamed_event() {
assert_eq!(
AbiParser::default().parse_event("event Foo(address)").unwrap(),
Event {
anonymous: false,
name: "Foo".to_string(),
inputs: vec![EventParam {
name: "".to_string(),
kind: ParamType::Address,
indexed: false,
}],
}
);
}
#[test]
fn parses_unnamed_indexed_event() {
assert_eq!(
AbiParser::default().parse_event("event Foo(address indexed)").unwrap(),
Event {
anonymous: false,
name: "Foo".to_string(),
inputs: vec![EventParam {
name: "".to_string(),
kind: ParamType::Address,
indexed: true,
}],
}
);
}
#[test]
fn parse_event_input() {
assert_eq!(
AbiParser::default().parse_event_arg("address indexed x").unwrap(),
EventParam { name: "x".to_string(), kind: ParamType::Address, indexed: true }
);
assert_eq!(
AbiParser::default().parse_event_arg("address x").unwrap(),
EventParam { name: "x".to_string(), kind: ParamType::Address, indexed: false }
);
}
#[test]
fn can_parse_functions() {
[
"function foo(uint256[] memory x) external view returns (address)",
"function bar(uint256[] memory x) returns(address)",
"function bar(uint256[] memory x, uint32 y) returns (address, uint256)",
"function foo(address[] memory, bytes memory) returns (bytes memory)",
"function bar(uint256[] memory x)",
"function bar()",
"bar(uint256[] memory x)(address)",
"bar(uint256[] memory x, uint32 y)(address, uint256)",
"foo(address[] memory, bytes memory)(bytes memory)",
"bar(uint256[] memory x)()",
"bar()()",
"bar(uint256)",
"bar()",
]
.iter()
.for_each(|x| {
AbiParser::default().parse_function(x).unwrap();
});
}
#[test]
fn can_parse_structs_and_functions() {
let abi = &[
"struct Demo {bytes x; address payable d;}",
"struct Voter { uint weight; bool voted; address delegate; uint vote; }",
"event FireEvent(Voter v, NestedVoter2 n)",
"function foo(uint256[] memory x) external view returns (address)",
"function call(Voter memory voter) returns (address, uint256)",
"foo(uint256[] memory x)()",
"call(Voter memory voter)(address, uint256)",
"struct NestedVoter { Voter voter; bool voted; address delegate; uint vote; }",
"struct NestedVoter2 { NestedVoter[] voter; Voter[10] votes; address delegate; uint vote; }",
];
parse(abi).unwrap();
}
#[test]
fn can_parse_params() {
[
"address x",
"address",
"bytes memory y",
"bytes memory",
"bytes32[] memory",
"bytes32[] memory z",
]
.iter()
.for_each(|x| {
AbiParser::default().parse_param(x).unwrap();
});
}
#[test]
fn can_read_backslashes() {
parse(&[
"\"function setValue(string)\"",
"\"function getValue() external view returns(string)\"",
])
.unwrap();
}
#[test]
fn can_substitute_structs() {
let abi = parse(&[
"struct MyStruct {int y; address _addr;}",
"event FireEvent(MyStruct m, address indexed newOwner)",
])
.unwrap();
assert_eq!(
abi.events["FireEvent"][0].inputs.clone(),
vec![
EventParam {
name: "m".to_string(),
kind: ParamType::Tuple(vec![ParamType::Int(256), ParamType::Address]),
indexed: false
},
EventParam {
name: "newOwner".to_string(),
kind: ParamType::Address,
indexed: true
},
]
);
}
#[test]
fn can_substitute_array_structs() {
let abi = parse(&[
"struct MyStruct {int y; address _addr;}",
"event FireEvent(MyStruct[] m, MyStruct[10] m2)",
])
.unwrap();
assert_eq!(
abi.events["FireEvent"][0].inputs.clone(),
vec![
EventParam {
name: "m".to_string(),
kind: ParamType::Array(Box::new(ParamType::Tuple(vec![
ParamType::Int(256),
ParamType::Address
]))),
indexed: false
},
EventParam {
name: "m2".to_string(),
kind: ParamType::FixedArray(
Box::new(ParamType::Tuple(vec![ParamType::Int(256), ParamType::Address])),
10
),
indexed: false
},
]
);
}
#[test]
fn can_substitute_nested_array_structs() {
let abi = parse(&[
"struct MyStruct {int y; address _addr;}",
"event FireEvent(MyStruct[] m, MyStructWrapper w)",
"struct MyStructWrapper {MyStruct y; int y; address _addr;}",
])
.unwrap();
assert_eq!(
abi.events["FireEvent"][0].inputs.clone(),
vec![
EventParam {
name: "m".to_string(),
kind: ParamType::Array(Box::new(ParamType::Tuple(vec![
ParamType::Int(256),
ParamType::Address
]))),
indexed: false
},
EventParam {
name: "w".to_string(),
kind: ParamType::Tuple(vec![
ParamType::Tuple(vec![ParamType::Int(256), ParamType::Address]),
ParamType::Int(256),
ParamType::Address
]),
indexed: false
},
]
);
}
}