372 lines
10 KiB
Go
372 lines
10 KiB
Go
// Package blake3 implements the BLAKE3 cryptographic hash function.
|
|
//
|
|
// This is a direct port of the Rust reference implementation. It is not
|
|
// optimized for performance.
|
|
package blake3
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"hash"
|
|
)
|
|
|
|
const (
|
|
OUT_LEN = 32
|
|
KEY_LEN = 32
|
|
BLOCK_LEN = 64
|
|
CHUNK_LEN = 1024
|
|
|
|
CHUNK_START = 1 << 0
|
|
CHUNK_END = 1 << 1
|
|
PARENT = 1 << 2
|
|
ROOT = 1 << 3
|
|
KEYED_HASH = 1 << 4
|
|
DERIVE_KEY_CONTEXT = 1 << 5
|
|
DERIVE_KEY_MATERIAL = 1 << 6
|
|
)
|
|
|
|
var IV = [8]uint32{
|
|
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
|
|
}
|
|
|
|
var MSG_PERMUTATION = [16]uint{2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8}
|
|
|
|
func rotate_right(x uint32, n int) uint32 {
|
|
return (x >> n) | (x << (32 - n))
|
|
}
|
|
|
|
// The mixing function, G, which mixes either a column or a diagonal.
|
|
func g(state *[16]uint32, a, b, c, d int, mx, my uint32) {
|
|
state[a] = state[a] + state[b] + mx
|
|
state[d] = rotate_right(state[d]^state[a], 16)
|
|
state[c] = state[c] + state[d]
|
|
state[b] = rotate_right(state[b]^state[c], 12)
|
|
state[a] = state[a] + state[b] + my
|
|
state[d] = rotate_right(state[d]^state[a], 8)
|
|
state[c] = state[c] + state[d]
|
|
state[b] = rotate_right(state[b]^state[c], 7)
|
|
}
|
|
|
|
func round(state, m *[16]uint32) {
|
|
// Mix the columns.
|
|
g(state, 0, 4, 8, 12, m[0], m[1])
|
|
g(state, 1, 5, 9, 13, m[2], m[3])
|
|
g(state, 2, 6, 10, 14, m[4], m[5])
|
|
g(state, 3, 7, 11, 15, m[6], m[7])
|
|
// Mix the diagonals.
|
|
g(state, 0, 5, 10, 15, m[8], m[9])
|
|
g(state, 1, 6, 11, 12, m[10], m[11])
|
|
g(state, 2, 7, 8, 13, m[12], m[13])
|
|
g(state, 3, 4, 9, 14, m[14], m[15])
|
|
}
|
|
|
|
func permute(m *[16]uint32) {
|
|
var permuted [16]uint32
|
|
for i := range permuted {
|
|
permuted[i] = m[MSG_PERMUTATION[i]]
|
|
}
|
|
*m = permuted
|
|
}
|
|
|
|
func compress(chaining_value *[8]uint32, block_words *[16]uint32, counter uint64, block_len uint32, flags uint32) [16]uint32 {
|
|
state := [16]uint32{
|
|
chaining_value[0],
|
|
chaining_value[1],
|
|
chaining_value[2],
|
|
chaining_value[3],
|
|
chaining_value[4],
|
|
chaining_value[5],
|
|
chaining_value[6],
|
|
chaining_value[7],
|
|
IV[0],
|
|
IV[1],
|
|
IV[2],
|
|
IV[3],
|
|
uint32(counter),
|
|
uint32(counter >> 32),
|
|
block_len,
|
|
flags,
|
|
}
|
|
block := *block_words
|
|
|
|
round(&state, &block) // round 1
|
|
permute(&block)
|
|
round(&state, &block) // round 2
|
|
permute(&block)
|
|
round(&state, &block) // round 3
|
|
permute(&block)
|
|
round(&state, &block) // round 4
|
|
permute(&block)
|
|
round(&state, &block) // round 5
|
|
permute(&block)
|
|
round(&state, &block) // round 6
|
|
permute(&block)
|
|
round(&state, &block) // round 7
|
|
|
|
for i := range chaining_value {
|
|
state[i] ^= state[i+8]
|
|
state[i+8] ^= chaining_value[i]
|
|
}
|
|
return state
|
|
}
|
|
|
|
func first_8_words(compression_output [16]uint32) (out [8]uint32) {
|
|
copy(out[:], compression_output[:8])
|
|
return
|
|
}
|
|
|
|
func words_from_litte_endian_bytes(bytes []byte, words []uint32) {
|
|
for i := 0; i < len(bytes); i += 4 {
|
|
words[i/4] = binary.LittleEndian.Uint32(bytes[i:])
|
|
}
|
|
}
|
|
|
|
// Each chunk or parent node can produce either an 8-word chaining value or, by
|
|
// setting the ROOT flag, any number of final output bytes. The output struct
|
|
// captures the state just prior to choosing between those two possibilities.
|
|
type output struct {
|
|
input_chaining_value [8]uint32
|
|
block_words [16]uint32
|
|
counter uint64
|
|
block_len uint32
|
|
flags uint32
|
|
}
|
|
|
|
func (o *output) chaining_value() [8]uint32 {
|
|
return first_8_words(compress(
|
|
&o.input_chaining_value,
|
|
&o.block_words,
|
|
o.counter,
|
|
o.block_len,
|
|
o.flags,
|
|
))
|
|
}
|
|
|
|
func (o *output) root_output_bytes(out_slice []byte) {
|
|
output_block_counter := uint64(0)
|
|
for len(out_slice) > 0 {
|
|
words := compress(
|
|
&o.input_chaining_value,
|
|
&o.block_words,
|
|
output_block_counter,
|
|
o.block_len,
|
|
o.flags|ROOT,
|
|
)
|
|
var wordsBytes [16 * 4]byte
|
|
for i, w := range words {
|
|
binary.LittleEndian.PutUint32(wordsBytes[i*4:], w)
|
|
}
|
|
n := copy(out_slice, wordsBytes[:])
|
|
out_slice = out_slice[n:]
|
|
output_block_counter++
|
|
}
|
|
}
|
|
|
|
type chunkState struct {
|
|
chaining_value [8]uint32
|
|
chunk_counter uint64
|
|
block [BLOCK_LEN]byte
|
|
block_len byte
|
|
blocks_compressed byte
|
|
flags uint32
|
|
}
|
|
|
|
func (cs *chunkState) len() int {
|
|
return BLOCK_LEN*int(cs.blocks_compressed) + int(cs.block_len)
|
|
}
|
|
|
|
func (cs *chunkState) start_flag() uint32 {
|
|
if cs.blocks_compressed == 0 {
|
|
return CHUNK_START
|
|
}
|
|
return 0
|
|
}
|
|
|
|
func (cs *chunkState) update(input []byte) {
|
|
for len(input) > 0 {
|
|
// If the block buffer is full, compress it and clear it. More
|
|
// input is coming, so this compression is not CHUNK_END.
|
|
if cs.block_len == BLOCK_LEN {
|
|
var block_words [16]uint32
|
|
words_from_litte_endian_bytes(cs.block[:], block_words[:])
|
|
cs.chaining_value = first_8_words(compress(
|
|
&cs.chaining_value,
|
|
&block_words,
|
|
cs.chunk_counter,
|
|
BLOCK_LEN,
|
|
cs.flags|cs.start_flag(),
|
|
))
|
|
cs.blocks_compressed++
|
|
cs.block = [BLOCK_LEN]byte{}
|
|
cs.block_len = 0
|
|
}
|
|
|
|
// Copy input bytes into the block buffer.
|
|
n := copy(cs.block[cs.block_len:], input)
|
|
cs.block_len += byte(n)
|
|
input = input[n:]
|
|
}
|
|
}
|
|
|
|
func (cs *chunkState) output() *output {
|
|
var block_words [16]uint32
|
|
words_from_litte_endian_bytes(cs.block[:], block_words[:])
|
|
return &output{
|
|
input_chaining_value: cs.chaining_value,
|
|
block_words: block_words,
|
|
block_len: uint32(cs.block_len),
|
|
counter: cs.chunk_counter,
|
|
flags: cs.flags | cs.start_flag() | CHUNK_END,
|
|
}
|
|
}
|
|
|
|
func newChunkState(key [8]uint32, chunk_counter uint64, flags uint32) chunkState {
|
|
return chunkState{
|
|
chaining_value: key,
|
|
chunk_counter: chunk_counter,
|
|
flags: flags,
|
|
}
|
|
}
|
|
|
|
func parent_output(left_child_cv [8]uint32, right_child_cv [8]uint32, key [8]uint32, flags uint32) *output {
|
|
var block_words [16]uint32
|
|
copy(block_words[:8], left_child_cv[:])
|
|
copy(block_words[8:], right_child_cv[:])
|
|
return &output{
|
|
input_chaining_value: key,
|
|
block_words: block_words,
|
|
counter: 0, // Always 0 for parent nodes.
|
|
block_len: BLOCK_LEN, // Always BLOCK_LEN (64) for parent nodes.
|
|
flags: PARENT | flags,
|
|
}
|
|
}
|
|
|
|
func parent_cv(left_child_cv [8]uint32, right_child_cv [8]uint32, key [8]uint32, flags uint32) [8]uint32 {
|
|
return parent_output(left_child_cv, right_child_cv, key, flags).chaining_value()
|
|
}
|
|
|
|
// Hasher implements hash.Hash.
|
|
type Hasher struct {
|
|
chunk_state chunkState
|
|
key [8]uint32
|
|
cv_stack [54][8]uint32 // Space for 54 subtree chaining values:
|
|
cv_stack_len byte // 2^54 * CHUNK_LEN = 2^64
|
|
flags uint32
|
|
out_size int
|
|
}
|
|
|
|
func newHasher(key [8]uint32, flags uint32, out_size int) *Hasher {
|
|
return &Hasher{
|
|
chunk_state: newChunkState(key, 0, flags),
|
|
key: key,
|
|
flags: flags,
|
|
out_size: out_size,
|
|
}
|
|
}
|
|
|
|
// New returns a Hasher for the specified size and key. If key is nil, the hash
|
|
// is unkeyed.
|
|
func New(size int, key []byte) *Hasher {
|
|
if key == nil {
|
|
return newHasher(IV, 0, size)
|
|
}
|
|
var key_words [8]uint32
|
|
words_from_litte_endian_bytes(key[:], key_words[:])
|
|
return newHasher(key_words, KEYED_HASH, size)
|
|
}
|
|
|
|
// NewFromDerivedKey returns a Hasher whose key was derived from the supplied
|
|
// context string.
|
|
func NewFromDerivedKey(size int, ctx string) *Hasher {
|
|
h := newHasher(IV, DERIVE_KEY_CONTEXT, KEY_LEN)
|
|
h.Write([]byte(ctx))
|
|
key := h.Sum(nil)
|
|
var key_words [8]uint32
|
|
words_from_litte_endian_bytes(key, key_words[:])
|
|
return newHasher(key_words, DERIVE_KEY_MATERIAL, size)
|
|
}
|
|
|
|
func (h *Hasher) push_stack(cv [8]uint32) {
|
|
h.cv_stack[h.cv_stack_len] = cv
|
|
h.cv_stack_len++
|
|
}
|
|
|
|
func (h *Hasher) pop_stack() [8]uint32 {
|
|
h.cv_stack_len--
|
|
return h.cv_stack[h.cv_stack_len]
|
|
}
|
|
|
|
func (h *Hasher) add_chunk_chaining_value(new_cv [8]uint32, total_chunks uint64) {
|
|
// This chunk might complete some subtrees. For each completed subtree,
|
|
// its left child will be the current top entry in the CV stack, and
|
|
// its right child will be the current value of `new_cv`. Pop each left
|
|
// child off the stack, merge it with `new_cv`, and overwrite `new_cv`
|
|
// with the result. After all these merges, push the final value of
|
|
// `new_cv` onto the stack. The number of completed subtrees is given
|
|
// by the number of trailing 0-bits in the new total number of chunks.
|
|
for total_chunks&1 == 0 {
|
|
new_cv = parent_cv(h.pop_stack(), new_cv, h.key, h.flags)
|
|
total_chunks >>= 1
|
|
}
|
|
h.push_stack(new_cv)
|
|
}
|
|
|
|
// Reset implements hash.Hash.
|
|
func (h *Hasher) Reset() {
|
|
h.chunk_state = newChunkState(h.key, 0, h.flags)
|
|
h.cv_stack_len = 0
|
|
}
|
|
|
|
// BlockSize implements hash.Hash.
|
|
func (h *Hasher) BlockSize() int { return 1024 }
|
|
|
|
// Size implements hash.Hash.
|
|
func (h *Hasher) Size() int { return h.out_size }
|
|
|
|
// Write implements hash.Hash.
|
|
func (h *Hasher) Write(input []byte) (int, error) {
|
|
written := len(input)
|
|
for len(input) > 0 {
|
|
// If the current chunk is complete, finalize it and reset the
|
|
// chunk state. More input is coming, so this chunk is not ROOT.
|
|
if h.chunk_state.len() == CHUNK_LEN {
|
|
chunk_cv := h.chunk_state.output().chaining_value()
|
|
total_chunks := h.chunk_state.chunk_counter + 1
|
|
h.add_chunk_chaining_value(chunk_cv, total_chunks)
|
|
h.chunk_state = newChunkState(h.key, total_chunks, h.flags)
|
|
}
|
|
|
|
// Compress input bytes into the current chunk state.
|
|
n := len(input)
|
|
if n > CHUNK_LEN-h.chunk_state.len() {
|
|
n = CHUNK_LEN - h.chunk_state.len()
|
|
}
|
|
h.chunk_state.update(input[:n])
|
|
input = input[n:]
|
|
}
|
|
return written, nil
|
|
}
|
|
|
|
// Sum implements hash.Hash.
|
|
func (h *Hasher) Sum(out_slice []byte) []byte {
|
|
// Starting with the output from the current chunk, compute all the
|
|
// parent chaining values along the right edge of the tree, until we
|
|
// have the root output.
|
|
var output = h.chunk_state.output()
|
|
var parent_nodes_remaining = h.cv_stack_len
|
|
for parent_nodes_remaining > 0 {
|
|
parent_nodes_remaining--
|
|
output = parent_output(
|
|
h.cv_stack[parent_nodes_remaining],
|
|
output.chaining_value(),
|
|
h.key,
|
|
h.flags,
|
|
)
|
|
}
|
|
out := make([]byte, h.Size())
|
|
output.root_output_bytes(out)
|
|
return append(out_slice, out...)
|
|
}
|
|
|
|
// ensure that Hasher implements hash.Hash
|
|
var _ hash.Hash = (*Hasher)(nil)
|