// Package blake3 implements the BLAKE3 cryptographic hash function. // // This is a direct port of the Rust reference implementation. It is not // optimized for performance. package blake3 import ( "encoding/binary" "errors" "hash" "io" "math/bits" ) const ( blockLen = 64 chunkLen = 1024 ) // flags const ( flagChunkStart = 1 << iota flagChunkEnd flagParent flagRoot flagKeyedHash flagDeriveKeyContext flagDeriveKeyMaterial ) var iv = [8]uint32{ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, } func gx(state *[16]uint32, a, b, c, d int, mx uint32) { state[a] += state[b] + mx state[d] = bits.RotateLeft32(state[d]^state[a], -16) state[c] += state[d] state[b] = bits.RotateLeft32(state[b]^state[c], -12) } func gy(state *[16]uint32, a, b, c, d int, my uint32) { state[a] += state[b] + my state[d] = bits.RotateLeft32(state[d]^state[a], -8) state[c] += state[d] state[b] = bits.RotateLeft32(state[b]^state[c], -7) } func round(state *[16]uint32, m *[16]uint32) { // Mix the columns. gx(state, 0, 4, 8, 12, m[0]) gy(state, 0, 4, 8, 12, m[1]) gx(state, 1, 5, 9, 13, m[2]) gy(state, 1, 5, 9, 13, m[3]) gx(state, 2, 6, 10, 14, m[4]) gy(state, 2, 6, 10, 14, m[5]) gx(state, 3, 7, 11, 15, m[6]) gy(state, 3, 7, 11, 15, m[7]) // Mix the diagonals. gx(state, 0, 5, 10, 15, m[8]) gy(state, 0, 5, 10, 15, m[9]) gx(state, 1, 6, 11, 12, m[10]) gy(state, 1, 6, 11, 12, m[11]) gx(state, 2, 7, 8, 13, m[12]) gy(state, 2, 7, 8, 13, m[13]) gx(state, 3, 4, 9, 14, m[14]) gy(state, 3, 4, 9, 14, m[15]) } func permute(m *[16]uint32) { *m = [16]uint32{ m[2], m[6], m[3], m[10], m[7], m[0], m[4], m[13], m[1], m[11], m[12], m[5], m[9], m[14], m[15], m[8], } } // Each chunk or parent node can produce either an 8-word chaining value or, by // setting flagRoot, any number of final output bytes. The node struct // captures the state just prior to choosing between those two possibilities. type node struct { cv [8]uint32 block [16]uint32 counter uint64 blockLen uint32 flags uint32 } func (n node) compress() [16]uint32 { state := [16]uint32{ n.cv[0], n.cv[1], n.cv[2], n.cv[3], n.cv[4], n.cv[5], n.cv[6], n.cv[7], iv[0], iv[1], iv[2], iv[3], uint32(n.counter), uint32(n.counter >> 32), n.blockLen, n.flags, } round(&state, &n.block) // round 1 permute(&n.block) round(&state, &n.block) // round 2 permute(&n.block) round(&state, &n.block) // round 3 permute(&n.block) round(&state, &n.block) // round 4 permute(&n.block) round(&state, &n.block) // round 5 permute(&n.block) round(&state, &n.block) // round 6 permute(&n.block) round(&state, &n.block) // round 7 for i := range n.cv { state[i] ^= state[i+8] state[i+8] ^= n.cv[i] } return state } func (n node) chainingValue() (cv [8]uint32) { full := n.compress() copy(cv[:], full[:8]) return } func bytesToWords(bytes []byte, words []uint32) { for i := range words { words[i] = binary.LittleEndian.Uint32(bytes[i*4:]) } } func wordsToBytes(words []uint32, bytes []byte) { for i, w := range words { binary.LittleEndian.PutUint32(bytes[i*4:], w) } } // An OutputReader produces an seekable stream of output. Up to 2^64 - 1 bytes // can be safely read from the stream. type OutputReader struct { n node block [blockLen]byte unread int } // Read implements io.Reader. It always return len(p), nil. func (or *OutputReader) Read(p []byte) (int, error) { lenp := len(p) for len(p) > 0 { if or.unread == 0 { words := or.n.compress() wordsToBytes(words[:], or.block[:]) or.unread = blockLen or.n.counter++ } // copy from output buffer n := copy(p, or.block[blockLen-or.unread:]) or.unread -= n p = p[n:] } return lenp, nil } // Seek implements io.Seeker. SeekEnd is defined as 2^64 - 1 bytes, the maximum // safe output of a BLAKE3 stream. func (or *OutputReader) Seek(offset int64, whence int) (int64, error) { off := int64(or.n.counter*blockLen) + int64(blockLen-or.unread) switch whence { case io.SeekStart: off = offset case io.SeekCurrent: off += offset case io.SeekEnd: // BLAKE3 can safely output up to 2^64 - 1 bytes. Seeking to the "end" // of this stream is kind of strange, but perhaps could be useful for // testing overflow scenarios. off = int64(^uint64(0) - uint64(offset)) default: panic("invalid whence") } if off < 0 { return 0, errors.New("seek position cannot be negative") } or.n.counter = uint64(off) / blockLen or.unread = blockLen - (int(off) % blockLen) // If the new offset is not a block boundary, generate the block we are // "inside." if or.unread != 0 { words := or.n.compress() wordsToBytes(words[:], or.block[:]) } return off, nil } type chunkState struct { n node block [blockLen]byte blockLen int bytesConsumed int } func (cs *chunkState) chunkCounter() uint64 { return cs.n.counter } func (cs *chunkState) update(input []byte) { for len(input) > 0 { // If the block buffer is full, compress it and clear it. More // input is coming, so this compression is not flagChunkEnd. if cs.blockLen == blockLen { bytesToWords(cs.block[:], cs.n.block[:]) cs.n.cv = cs.n.chainingValue() cs.block = [blockLen]byte{} cs.blockLen = 0 // After the first chunk has been compressed, clear the start flag. cs.n.flags &^= flagChunkStart } // Copy input bytes into the block buffer. n := copy(cs.block[cs.blockLen:], input) cs.blockLen += n cs.bytesConsumed += n input = input[n:] } } func (cs *chunkState) node() node { n := cs.n bytesToWords(cs.block[:], n.block[:]) n.blockLen = uint32(cs.blockLen) n.flags |= flagChunkEnd return n } func newChunkState(key [8]uint32, chunkCounter uint64, flags uint32) chunkState { return chunkState{ n: node{ cv: key, counter: chunkCounter, blockLen: blockLen, // compress the first chunk with the start flag set flags: flags | flagChunkStart, }, } } func parentNode(left, right [8]uint32, key [8]uint32, flags uint32) node { var blockWords [16]uint32 copy(blockWords[:8], left[:]) copy(blockWords[8:], right[:]) return node{ cv: key, block: blockWords, counter: 0, // Always 0 for parent nodes. blockLen: blockLen, // Always blockLen (64) for parent nodes. flags: flags | flagParent, } } // Hasher implements hash.Hash. type Hasher struct { cs chunkState key [8]uint32 chainStack [54][8]uint32 // space for 54 subtrees (2^54 * chunkLen = 2^64) stackSize int // index within chainStack flags uint32 size int // output size, for Sum } func newHasher(key [8]uint32, flags uint32, size int) *Hasher { return &Hasher{ cs: newChunkState(key, 0, flags), key: key, flags: flags, size: size, } } // New returns a Hasher for the specified size and key. If key is nil, the hash // is unkeyed. func New(size int, key []byte) *Hasher { if key == nil { return newHasher(iv, 0, size) } var keyWords [8]uint32 bytesToWords(key[:], keyWords[:]) return newHasher(keyWords, flagKeyedHash, size) } func (h *Hasher) addChunkChainingValue(cv [8]uint32, totalChunks uint64) { // This chunk might complete some subtrees. For each completed subtree, // its left child will be the current top entry in the CV stack, and // its right child will be the current value of `cv`. Pop each left // child off the stack, merge it with `cv`, and overwrite `cv` // with the result. After all these merges, push the final value of // `cv` onto the stack. The number of completed subtrees is given // by the number of trailing 0-bits in the new total number of chunks. right := cv for totalChunks&1 == 0 { // pop h.stackSize-- left := h.chainStack[h.stackSize] // merge right = parentNode(left, right, h.key, h.flags).chainingValue() totalChunks >>= 1 } h.chainStack[h.stackSize] = right h.stackSize++ } // Reset implements hash.Hash. func (h *Hasher) Reset() { h.cs = newChunkState(h.key, 0, h.flags) h.stackSize = 0 } // BlockSize implements hash.Hash. func (h *Hasher) BlockSize() int { return 64 } // Size implements hash.Hash. func (h *Hasher) Size() int { return h.size } // Write implements hash.Hash. func (h *Hasher) Write(p []byte) (int, error) { lenp := len(p) for len(p) > 0 { // If the current chunk is complete, finalize it and reset the // chunk state. More input is coming, so this chunk is not flagRoot. if h.cs.bytesConsumed == chunkLen { cv := h.cs.node().chainingValue() totalChunks := h.cs.chunkCounter() + 1 h.addChunkChainingValue(cv, totalChunks) h.cs = newChunkState(h.key, totalChunks, h.flags) } // Compress input bytes into the current chunk state. n := chunkLen - h.cs.bytesConsumed if n > len(p) { n = len(p) } h.cs.update(p[:n]) p = p[n:] } return lenp, nil } // Sum implements hash.Hash. func (h *Hasher) Sum(b []byte) []byte { ret, fill := sliceForAppend(b, h.Size()) h.XOF().Read(fill) return ret } // XOF returns an OutputReader initialized with the current hash state. func (h *Hasher) XOF() *OutputReader { // Starting with the node from the current chunk, compute all the // parent chaining values along the right edge of the tree, until we // have the root node. n := h.cs.node() for i := h.stackSize - 1; i >= 0; i-- { n = parentNode(h.chainStack[i], n.chainingValue(), h.key, h.flags) } n.flags |= flagRoot return &OutputReader{ n: n, } } // Sum256 returns the unkeyed BLAKE3 hash of b, truncated to 256 bits. func Sum256(b []byte) [32]byte { var out [32]byte h := New(32, nil) h.Write(b) h.Sum(out[:0]) return out } // Sum512 returns the unkeyed BLAKE3 hash of b, truncated to 512 bits. func Sum512(b []byte) [64]byte { var out [64]byte h := New(64, nil) h.Write(b) h.Sum(out[:0]) return out } // DeriveKey derives a subkey from ctx and srcKey. func DeriveKey(subKey []byte, ctx string, srcKey []byte) { // construct the derivation Hasher const derivationIVLen = 32 h := newHasher(iv, flagDeriveKeyContext, 32) h.Write([]byte(ctx)) var derivationIV [8]uint32 bytesToWords(h.Sum(make([]byte, 0, derivationIVLen)), derivationIV[:]) h = newHasher(derivationIV, flagDeriveKeyMaterial, len(subKey)) // derive the subKey h.Write(srcKey) h.Sum(subKey[:0]) } // ensure that Hasher implements hash.Hash var _ hash.Hash = (*Hasher)(nil) func sliceForAppend(in []byte, n int) (head, tail []byte) { if total := len(in) + n; cap(in) >= total { head = in[:total] } else { head = make([]byte, total) copy(head, in) } tail = head[len(in):] return }