add AVX2 implementation

This commit is contained in:
lukechampine 2020-07-30 13:54:11 -04:00
parent 6c1c802729
commit c2af4bc4c2
10 changed files with 1945 additions and 315 deletions

View File

@ -9,10 +9,29 @@ go get lukechampine.com/blake3
``` ```
`blake3` implements the [BLAKE3 cryptographic hash function](https://github.com/BLAKE3-team/BLAKE3). `blake3` implements the [BLAKE3 cryptographic hash function](https://github.com/BLAKE3-team/BLAKE3).
This implementation aims to be performant without sacrificing (too much)
readability, in the hopes of eventually landing in `x/crypto`.
This implementation is a port of the Rust reference implementation, refactored The pure-Go code is fairly well-optimized, achieving throughput of ~600 MB/s.
into more idiomatic Go style and with a handful of performance tweaks. There is a separate code path for small inputs (up to 64 bytes) that runs in
Performance is not great, not terrible. Eventually an assembly-optimized ~100 ns. On CPUs with AVX2 support, larger inputs (>=2 KB) are handled by
implementation will be merged into `x/crypto`, and then you should switch to an [`avo`](https://github.com/mmcloughlin/avo)-generated assembly routine that compresses 8 chunks in parallel,
that. In the meantime, you can use this package for code that needs BLAKE3 achieving throughput of ~2600 MB/s. Once [AVX-512 support](https://github.com/mmcloughlin/avo/issues/20) is added to `avo`, it
compatibility and doesn't need to be blazing fast. will be possible to compress 16 chunks in parallel, which should roughly double
throughput for sufficiently large inputs.
Contributions are greatly appreciated.
[All contributors are eligible to receive an Urbit planet.](https://twitter.com/lukechampine/status/1274797924522885134)
## Benchmarks
Tested on an i5-7600K @ 3.80GHz.
```
BenchmarkSum256/64 105 ns/op 609.51 MB/s
BenchmarkSum256/1024 1778 ns/op 576.00 MB/s
BenchmarkSum256/65536 24785 ns/op 2644.15 MB/s
BenchmarkWrite 389 ns/op 2631.78 MB/s
BenchmarkXOF 1591 ns/op 643.80 MB/s
```

239
avo/gen.go Normal file
View File

@ -0,0 +1,239 @@
// +build ignore
package main
import (
"fmt"
. "github.com/mmcloughlin/avo/build"
. "github.com/mmcloughlin/avo/operand"
. "github.com/mmcloughlin/avo/reg"
)
func main() {
genGlobals()
genCompressChunksAVX2()
Generate()
}
var globals struct {
iv Mem
blockLen Mem
stride1024 Mem
incrementCounter Mem
setFlags Mem
shuffleRot8 Mem
shuffleRot16 Mem
}
func genGlobals() {
globals.iv = GLOBL("iv", RODATA|NOPTR)
DATA(0*4, U32(0x6A09E667))
DATA(1*4, U32(0xBB67AE85))
DATA(2*4, U32(0x3C6EF372))
DATA(3*4, U32(0xA54FF53A))
globals.blockLen = GLOBL("block_len", RODATA|NOPTR)
for i := 0; i < 8; i++ {
DATA(i*4, U32(64))
}
globals.stride1024 = GLOBL("stride_1024", RODATA|NOPTR)
for i := 0; i < 8; i++ {
DATA(i*4, U32(i*1024))
}
globals.incrementCounter = GLOBL("increment_counter", RODATA|NOPTR)
for i := 0; i < 8; i++ {
DATA(i*8, U64(i))
}
globals.setFlags = GLOBL("set_flags", RODATA|NOPTR)
for i := 0; i < 16; i++ {
if i == 0 {
DATA(i*4, U32(1))
} else if i == 15 {
DATA(i*4, U32(2))
} else {
DATA(i*4, U32(0))
}
}
globals.shuffleRot8 = GLOBL("shuffle_rot8", RODATA|NOPTR)
for i := 0; i < 8; i++ {
DATA(i*4, U32(0x00030201+0x04040404*i))
}
globals.shuffleRot16 = GLOBL("shuffle_rot16", RODATA|NOPTR)
for i := 0; i < 8; i++ {
DATA(i*4, U32(0x01000302+0x04040404*i))
}
}
func genCompressChunksAVX2() {
TEXT("compressChunksAVX2", NOSPLIT, "func(cvs *[8][8]uint32, buf *[8192]byte, key *[8]uint32, counter uint64, flags uint32)")
cvs := Mem{Base: Load(Param("cvs"), GP64())}
buf := Mem{Base: Load(Param("buf"), GP64())}
key := Mem{Base: Load(Param("key"), GP64())}
counter, _ := Param("counter").Resolve()
flags, _ := Param("flags").Resolve()
vs := [16]VecVirtual{
YMM(), YMM(), YMM(), YMM(),
YMM(), YMM(), YMM(), YMM(),
YMM(), YMM(), YMM(), YMM(),
YMM(), YMM(), YMM(), YMM(),
}
// stack space for transposed message vectors
var mv [16]Mem
for i := range mv {
mv[i] = AllocLocal(32)
}
// stack space for spilled vs[8] register
spillMem := AllocLocal(32)
Comment("Load key")
for i := 0; i < 8; i++ {
VPBROADCASTD(key.Offset(i*4), vs[i])
}
Comment("Initialize counter")
counterLo := AllocLocal(32)
counterHi := AllocLocal(32)
VPBROADCASTQ(counter.Addr, vs[12])
VPBROADCASTQ(counter.Addr, vs[13])
VPADDQ(globals.incrementCounter.Offset(0*32), vs[12], vs[12])
VPADDQ(globals.incrementCounter.Offset(1*32), vs[13], vs[13])
VPUNPCKLDQ(vs[13], vs[12], vs[14])
VPUNPCKHDQ(vs[13], vs[12], vs[15])
VPUNPCKLDQ(vs[15], vs[14], vs[12])
VPUNPCKHDQ(vs[15], vs[14], vs[13])
VPERMQ(Imm(0xd8), vs[12], vs[12])
VPERMQ(Imm(0xd8), vs[13], vs[13])
VMOVDQU(vs[12], counterLo)
VMOVDQU(vs[13], counterHi)
Comment("Initialize flags")
chunkFlags := AllocLocal(16 * 4)
VPBROADCASTD(flags.Addr, vs[14])
VPOR(globals.setFlags.Offset(0*32), vs[14], vs[15])
VMOVDQU(vs[15], chunkFlags.Offset(0*32))
VPOR(globals.setFlags.Offset(1*32), vs[14], vs[15])
VMOVDQU(vs[15], chunkFlags.Offset(1*32))
Comment("Loop index")
loop := GP64()
XORQ(loop, loop)
Label("loop")
Comment("Load transposed block")
VMOVDQU(globals.stride1024, vs[9])
for i := 0; i < 16; i++ {
VPCMPEQD(vs[8], vs[8], vs[8]) // fastest way to set all bits to 1
VPGATHERDD(vs[8], buf.Offset(i*4).Idx(vs[9], 1), vs[10])
VMOVDQU(vs[10], mv[i])
}
ADDQ(Imm(64), buf.Base)
Comment("Reload state vectors (other than CVs)")
for i := 0; i < 4; i++ {
VPBROADCASTD(globals.iv.Offset(i*4), vs[8+i])
}
VMOVDQU(counterLo, vs[12])
VMOVDQU(counterHi, vs[13])
VMOVDQU(globals.blockLen, vs[14])
VPBROADCASTD(chunkFlags.Idx(loop, 4), vs[15])
VMOVDQU(vs[8], spillMem) // spill
for i := 0; i < 7; i++ {
Comment(fmt.Sprintf("Round %v", i+1))
round(vs, mv, vs[8], spillMem)
// permute
mv = [16]Mem{
mv[2], mv[6], mv[3], mv[10],
mv[7], mv[0], mv[4], mv[13],
mv[1], mv[11], mv[12], mv[5],
mv[9], mv[14], mv[15], mv[8],
}
}
Comment("Finalize CVs")
VMOVDQU(spillMem, vs[8]) // reload
for i := range vs[:8] {
VPXOR(vs[i], vs[i+8], vs[i])
}
Comment("Loop")
INCQ(loop)
CMPQ(loop, U32(16))
JNE(LabelRef("loop"))
Comment("Finished; transpose CVs")
src, dst := vs[:8], vs[8:]
// interleave uint32s
for i := 0; i < 8; i += 2 {
VPUNPCKLDQ(src[i+1], src[i], dst[i+0])
VPUNPCKHDQ(src[i+1], src[i], dst[i+1])
}
// interleave groups of two uint32s
for i := 0; i < 4; i++ {
j := i*2 - i%2 // j := 0,1,4,5
VPUNPCKLQDQ(dst[j+2], dst[j], src[i*2+0])
VPUNPCKHQDQ(dst[j+2], dst[j], src[i*2+1])
}
// interleave groups of four uint32s
for i := 0; i < 4; i++ {
VPERM2I128(Imm(0x20), src[i+4], src[i], dst[i+0])
VPERM2I128(Imm(0x31), src[i+4], src[i], dst[i+4])
}
for i, v := range dst {
VMOVDQU(v, cvs.Offset(i*32))
}
RET()
}
func round(sv [16]VecVirtual, mv [16]Mem, tmp VecVirtual, spillMem Mem) {
g(sv[0], sv[4], sv[8], sv[12], mv[0], mv[1], tmp, spillMem)
g(sv[1], sv[5], sv[9], sv[13], mv[2], mv[3], tmp, spillMem)
g(sv[2], sv[6], sv[10], sv[14], mv[4], mv[5], tmp, spillMem)
g(sv[3], sv[7], sv[11], sv[15], mv[6], mv[7], tmp, spillMem)
g(sv[0], sv[5], sv[10], sv[15], mv[8], mv[9], tmp, spillMem)
g(sv[1], sv[6], sv[11], sv[12], mv[10], mv[11], tmp, spillMem)
g(sv[2], sv[7], sv[8], sv[13], mv[12], mv[13], tmp, spillMem)
g(sv[3], sv[4], sv[9], sv[14], mv[14], mv[15], tmp, spillMem)
}
func g(a, b, c, d VecVirtual, mx, my Mem, tmp VecVirtual, spillMem Mem) {
// Helper function for performing rotations. Also manages c, tmp and
// spillMem: if c == tmp, we need to spill and reload c using spillMem.
rotr := func(v VecVirtual, n uint64, dst VecVirtual) {
switch n {
case 8, 16:
shuf := [...]Mem{8: globals.shuffleRot8, 16: globals.shuffleRot16}[n]
VPSHUFB(shuf, v, dst)
if c == tmp {
VMOVDQU(spillMem, c)
}
case 7, 12:
if c == tmp {
VMOVDQU(c, spillMem)
}
VPSRLD(Imm(n), v, tmp)
VPSLLD(Imm(32-n), v, dst)
VPOR(dst, tmp, dst)
}
}
VPADDD(a, b, a)
VPADDD(mx, a, a)
VPXOR(d, a, d)
rotr(d, 16, d)
VPADDD(c, d, c)
VPXOR(b, c, b)
rotr(b, 12, b)
VPADDD(a, b, a)
VPADDD(my, a, a)
VPXOR(d, a, d)
rotr(d, 8, d)
VPADDD(c, d, c)
VPXOR(b, c, b)
rotr(b, 7, b)
}

356
blake3.go
View File

@ -10,12 +10,6 @@ import (
"math/bits" "math/bits"
) )
const (
blockSize = 64
chunkSize = 1024
)
// flags
const ( const (
flagChunkStart = 1 << iota flagChunkStart = 1 << iota
flagChunkEnd flagChunkEnd
@ -24,6 +18,9 @@ const (
flagKeyedHash flagKeyedHash
flagDeriveKeyContext flagDeriveKeyContext
flagDeriveKeyMaterial flagDeriveKeyMaterial
blockSize = 64
chunkSize = 1024
) )
var iv = [8]uint32{ var iv = [8]uint32{
@ -31,332 +28,82 @@ var iv = [8]uint32{
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
} }
// helper functions for converting between bytes and BLAKE3 "words" // A node represents a chunk or parent in the BLAKE3 Merkle tree.
func bytesToWords(bytes [64]byte, words *[16]uint32) {
words[0] = binary.LittleEndian.Uint32(bytes[0:])
words[1] = binary.LittleEndian.Uint32(bytes[4:])
words[2] = binary.LittleEndian.Uint32(bytes[8:])
words[3] = binary.LittleEndian.Uint32(bytes[12:])
words[4] = binary.LittleEndian.Uint32(bytes[16:])
words[5] = binary.LittleEndian.Uint32(bytes[20:])
words[6] = binary.LittleEndian.Uint32(bytes[24:])
words[7] = binary.LittleEndian.Uint32(bytes[28:])
words[8] = binary.LittleEndian.Uint32(bytes[32:])
words[9] = binary.LittleEndian.Uint32(bytes[36:])
words[10] = binary.LittleEndian.Uint32(bytes[40:])
words[11] = binary.LittleEndian.Uint32(bytes[44:])
words[12] = binary.LittleEndian.Uint32(bytes[48:])
words[13] = binary.LittleEndian.Uint32(bytes[52:])
words[14] = binary.LittleEndian.Uint32(bytes[56:])
words[15] = binary.LittleEndian.Uint32(bytes[60:])
}
func wordsToBytes(words [16]uint32, block *[64]byte) {
binary.LittleEndian.PutUint32(block[0:], words[0])
binary.LittleEndian.PutUint32(block[4:], words[1])
binary.LittleEndian.PutUint32(block[8:], words[2])
binary.LittleEndian.PutUint32(block[12:], words[3])
binary.LittleEndian.PutUint32(block[16:], words[4])
binary.LittleEndian.PutUint32(block[20:], words[5])
binary.LittleEndian.PutUint32(block[24:], words[6])
binary.LittleEndian.PutUint32(block[28:], words[7])
binary.LittleEndian.PutUint32(block[32:], words[8])
binary.LittleEndian.PutUint32(block[36:], words[9])
binary.LittleEndian.PutUint32(block[40:], words[10])
binary.LittleEndian.PutUint32(block[44:], words[11])
binary.LittleEndian.PutUint32(block[48:], words[12])
binary.LittleEndian.PutUint32(block[52:], words[13])
binary.LittleEndian.PutUint32(block[56:], words[14])
binary.LittleEndian.PutUint32(block[60:], words[15])
}
func g(a, b, c, d, mx, my uint32) (uint32, uint32, uint32, uint32) {
a += b + mx
d = bits.RotateLeft32(d^a, -16)
c += d
b = bits.RotateLeft32(b^c, -12)
a += b + my
d = bits.RotateLeft32(d^a, -8)
c += d
b = bits.RotateLeft32(b^c, -7)
return a, b, c, d
}
// A node represents a chunk or parent in the BLAKE3 Merkle tree. In BLAKE3
// terminology, the elements of the bottom layer (aka "leaves") of the tree are
// called chunk nodes, and the elements of upper layers (aka "interior nodes")
// are called parent nodes.
//
// Computing a BLAKE3 hash involves splitting the input into chunk nodes, then
// repeatedly merging these nodes into parent nodes, until only a single "root"
// node remains. The root node can then be used to generate up to 2^64 - 1 bytes
// of pseudorandom output.
type node struct { type node struct {
// the chaining value from the previous state cv [8]uint32 // chaining value from previous node
cv [8]uint32
// the current state
block [16]uint32 block [16]uint32
counter uint64 counter uint64
blockLen uint32 blockLen uint32
flags uint32 flags uint32
} }
// compress is the core hash function, generating 16 pseudorandom words from a
// node.
func (n node) compress() [16]uint32 {
// NOTE: we unroll all of the rounds, as well as the permutations that occur
// between rounds.
// round 1 (also initializes state)
// columns
s0, s4, s8, s12 := g(n.cv[0], n.cv[4], iv[0], uint32(n.counter), n.block[0], n.block[1])
s1, s5, s9, s13 := g(n.cv[1], n.cv[5], iv[1], uint32(n.counter>>32), n.block[2], n.block[3])
s2, s6, s10, s14 := g(n.cv[2], n.cv[6], iv[2], n.blockLen, n.block[4], n.block[5])
s3, s7, s11, s15 := g(n.cv[3], n.cv[7], iv[3], n.flags, n.block[6], n.block[7])
// diagonals
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[8], n.block[9])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[10], n.block[11])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[12], n.block[13])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[14], n.block[15])
// round 2
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[2], n.block[6])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[3], n.block[10])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[7], n.block[0])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[4], n.block[13])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[1], n.block[11])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[12], n.block[5])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[9], n.block[14])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[15], n.block[8])
// round 3
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[3], n.block[4])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[10], n.block[12])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[13], n.block[2])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[7], n.block[14])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[6], n.block[5])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[9], n.block[0])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[11], n.block[15])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[8], n.block[1])
// round 4
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[10], n.block[7])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[12], n.block[9])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[14], n.block[3])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[13], n.block[15])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[4], n.block[0])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[11], n.block[2])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[5], n.block[8])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[1], n.block[6])
// round 5
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[12], n.block[13])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[9], n.block[11])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[15], n.block[10])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[14], n.block[8])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[7], n.block[2])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[5], n.block[3])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[0], n.block[1])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[6], n.block[4])
// round 6
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[9], n.block[14])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[11], n.block[5])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[8], n.block[12])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[15], n.block[1])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[13], n.block[3])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[0], n.block[10])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[2], n.block[6])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[4], n.block[7])
// round 7
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[11], n.block[15])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[5], n.block[0])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[1], n.block[9])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[8], n.block[6])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[14], n.block[10])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[2], n.block[12])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[3], n.block[4])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[7], n.block[13])
// finalization
return [16]uint32{
s0 ^ s8, s1 ^ s9, s2 ^ s10, s3 ^ s11,
s4 ^ s12, s5 ^ s13, s6 ^ s14, s7 ^ s15,
s8 ^ n.cv[0], s9 ^ n.cv[1], s10 ^ n.cv[2], s11 ^ n.cv[3],
s12 ^ n.cv[4], s13 ^ n.cv[5], s14 ^ n.cv[6], s15 ^ n.cv[7],
}
}
// chainingValue returns the first 8 words of the compressed node. This is used
// in two places. First, when a chunk node is being constructed, its cv is
// overwritten with this value after each block of input is processed. Second,
// when two nodes are merged into a parent, each of their chaining values
// supplies half of the new node's block.
func (n node) chainingValue() (cv [8]uint32) {
full := n.compress()
copy(cv[:], full[:8])
return
}
// chunkState manages the state involved in hashing a single chunk of input.
type chunkState struct {
n node
block [blockSize]byte
blockLen int
bytesConsumed int
}
// chunkCounter is the index of this chunk, i.e. the number of chunks that have
// been processed prior to this one.
func (cs *chunkState) chunkCounter() uint64 {
return cs.n.counter
}
func (cs *chunkState) complete() bool {
return cs.bytesConsumed == chunkSize
}
// update incorporates input into the chunkState.
func (cs *chunkState) update(input []byte) {
for len(input) > 0 {
// If the block buffer is full, compress it and clear it. More
// input is coming, so this compression is not flagChunkEnd.
if cs.blockLen == blockSize {
// copy the chunk block (bytes) into the node block and chain it.
bytesToWords(cs.block, &cs.n.block)
cs.n.cv = cs.n.chainingValue()
// clear the start flag for all but the first block
cs.n.flags &^= flagChunkStart
cs.blockLen = 0
}
// Copy input bytes into the chunk block.
n := copy(cs.block[cs.blockLen:], input)
cs.blockLen += n
cs.bytesConsumed += n
input = input[n:]
}
}
// compiles to memclr
func clear(b []byte) {
for i := range b {
b[i] = 0
}
}
// node returns a node containing the chunkState's current state, with the
// ChunkEnd flag set.
func (cs *chunkState) node() node {
n := cs.n
// pad the remaining space in the block with zeros
clear(cs.block[cs.blockLen:])
bytesToWords(cs.block, &n.block)
n.blockLen = uint32(cs.blockLen)
n.flags |= flagChunkEnd
return n
}
func newChunkState(iv [8]uint32, chunkCounter uint64, flags uint32) chunkState {
return chunkState{
n: node{
cv: iv,
counter: chunkCounter,
blockLen: blockSize,
// compress the first block with the start flag set
flags: flags | flagChunkStart,
},
}
}
// parentNode returns a node that incorporates the chaining values of two child // parentNode returns a node that incorporates the chaining values of two child
// nodes. // nodes.
func parentNode(left, right [8]uint32, key [8]uint32, flags uint32) node { func parentNode(left, right [8]uint32, key [8]uint32, flags uint32) node {
var blockWords [16]uint32 n := node{
copy(blockWords[:8], left[:])
copy(blockWords[8:], right[:])
return node{
cv: key, cv: key,
block: blockWords,
counter: 0, // counter is reset for parents counter: 0, // counter is reset for parents
blockLen: blockSize, // block is full: 8 words from left, 8 from right blockLen: blockSize, // block is full
flags: flags | flagParent, flags: flags | flagParent,
} }
copy(n.block[:8], left[:])
copy(n.block[8:], right[:])
return n
} }
// Hasher implements hash.Hash. // Hasher implements hash.Hash.
type Hasher struct { type Hasher struct {
cs chunkState
key [8]uint32 key [8]uint32
flags uint32 flags uint32
size int // output size, for Sum size int // output size, for Sum
// log(n) set of Merkle subtree roots, at most one per height. // log(n) set of Merkle subtree roots, at most one per height.
stack [54][8]uint32 // 2^54 * chunkSize = 2^64 stack [51][8]uint32 // 2^51 * 8 * chunkSize = 2^64
used uint64 // bit vector indicating which stack elems are valid; also number of chunks added counter uint64 // number of buffers hashed; also serves as a bit vector indicating which stack elems are occupied
buf [8 * chunkSize]byte
buflen int
} }
func (h *Hasher) hasSubtreeAtHeight(i int) bool { func (h *Hasher) hasSubtreeAtHeight(i int) bool {
return h.used&(1<<i) != 0 return h.counter&(1<<i) != 0
} }
// addChunkChainingValue appends a chunk to the right edge of the Merkle tree. func (h *Hasher) pushSubtree(cv [8]uint32) {
func (h *Hasher) addChunkChainingValue(cv [8]uint32) {
// seek to first open stack slot, merging subtrees as we go // seek to first open stack slot, merging subtrees as we go
i := 0 i := 0
for ; h.hasSubtreeAtHeight(i); i++ { for h.hasSubtreeAtHeight(i) {
cv = parentNode(h.stack[i], cv, h.key, h.flags).chainingValue() cv = chainingValue(parentNode(h.stack[i], cv, h.key, h.flags))
i++
} }
h.stack[i] = cv h.stack[i] = cv
h.used++ h.counter++
} }
// rootNode computes the root of the Merkle tree. It does not modify the // rootNode computes the root of the Merkle tree. It does not modify the
// chainStack. // stack.
func (h *Hasher) rootNode() node { func (h *Hasher) rootNode() node {
n := h.cs.node() n := compressBuffer(&h.buf, h.buflen, &h.key, h.counter*8, h.flags)
for i := bits.TrailingZeros64(h.used); i < bits.Len64(h.used); i++ { for i := bits.TrailingZeros64(h.counter); i < bits.Len64(h.counter); i++ {
if h.hasSubtreeAtHeight(i) { if h.hasSubtreeAtHeight(i) {
n = parentNode(h.stack[i], n.chainingValue(), h.key, h.flags) n = parentNode(h.stack[i], chainingValue(n), h.key, h.flags)
} }
} }
n.flags |= flagRoot n.flags |= flagRoot
return n return n
} }
// Reset implements hash.Hash.
func (h *Hasher) Reset() {
h.cs = newChunkState(h.key, 0, h.flags)
h.used = 0
}
// BlockSize implements hash.Hash.
func (h *Hasher) BlockSize() int { return 64 }
// Size implements hash.Hash.
func (h *Hasher) Size() int { return h.size }
// Write implements hash.Hash. // Write implements hash.Hash.
func (h *Hasher) Write(p []byte) (int, error) { func (h *Hasher) Write(p []byte) (int, error) {
lenp := len(p) lenp := len(p)
for len(p) > 0 { for len(p) > 0 {
// If the current chunk is complete, finalize it and add it to the tree, if h.buflen == len(h.buf) {
// then reset the chunk state (but keep incrementing the counter across n := compressBuffer(&h.buf, h.buflen, &h.key, h.counter*8, h.flags)
// chunks). h.pushSubtree(chainingValue(n))
if h.cs.complete() { h.buflen = 0
cv := h.cs.node().chainingValue()
h.addChunkChainingValue(cv)
h.cs = newChunkState(h.key, h.cs.chunkCounter()+1, h.flags)
} }
n := copy(h.buf[h.buflen:], p)
// Compress input bytes into the current chunk state. h.buflen += n
n := chunkSize - h.cs.bytesConsumed
if n > len(p) {
n = len(p)
}
h.cs.update(p[:n])
p = p[n:] p = p[n:]
} }
return lenp, nil return lenp, nil
@ -377,6 +124,18 @@ func (h *Hasher) Sum(b []byte) (sum []byte) {
return return
} }
// Reset implements hash.Hash.
func (h *Hasher) Reset() {
h.counter = 0
h.buflen = 0
}
// BlockSize implements hash.Hash.
func (h *Hasher) BlockSize() int { return 64 }
// Size implements hash.Hash.
func (h *Hasher) Size() int { return h.size }
// XOF returns an OutputReader initialized with the current hash state. // XOF returns an OutputReader initialized with the current hash state.
func (h *Hasher) XOF() *OutputReader { func (h *Hasher) XOF() *OutputReader {
return &OutputReader{ return &OutputReader{
@ -386,7 +145,6 @@ func (h *Hasher) XOF() *OutputReader {
func newHasher(key [8]uint32, flags uint32, size int) *Hasher { func newHasher(key [8]uint32, flags uint32, size int) *Hasher {
return &Hasher{ return &Hasher{
cs: newChunkState(key, 0, flags),
key: key, key: key,
flags: flags, flags: flags,
size: size, size: size,
@ -394,7 +152,7 @@ func newHasher(key [8]uint32, flags uint32, size int) *Hasher {
} }
// New returns a Hasher for the specified size and key. If key is nil, the hash // New returns a Hasher for the specified size and key. If key is nil, the hash
// is unkeyed. // is unkeyed. Otherwise, len(key) must be 32.
func New(size int, key []byte) *Hasher { func New(size int, key []byte) *Hasher {
if key == nil { if key == nil {
return newHasher(iv, 0, size) return newHasher(iv, 0, size)
@ -408,21 +166,30 @@ func New(size int, key []byte) *Hasher {
// Sum256 and Sum512 always use the same hasher state, so we can save some time // Sum256 and Sum512 always use the same hasher state, so we can save some time
// when hashing small inputs by constructing the hasher ahead of time. // when hashing small inputs by constructing the hasher ahead of time.
var defaultHasher = newHasher(iv, 0, 0) var defaultHasher = New(0, nil)
// Sum256 returns the unkeyed BLAKE3 hash of b, truncated to 256 bits. // Sum256 returns the unkeyed BLAKE3 hash of b, truncated to 256 bits.
func Sum256(b []byte) (out [32]byte) { func Sum256(b []byte) (out [32]byte) {
h := *defaultHasher out512 := Sum512(b)
h.Write(b) copy(out[:], out512[:])
h.XOF().Read(out[:])
return return
} }
// Sum512 returns the unkeyed BLAKE3 hash of b, truncated to 512 bits. // Sum512 returns the unkeyed BLAKE3 hash of b, truncated to 512 bits.
func Sum512(b []byte) (out [64]byte) { func Sum512(b []byte) (out [64]byte) {
var n node
if len(b) <= blockSize {
hashBlock(&out, b)
return
} else if len(b) <= chunkSize {
n = compressChunk(b, &iv, 0, 0)
n.flags |= flagRoot
} else {
h := *defaultHasher h := *defaultHasher
h.Write(b) h.Write(b)
h.XOF().Read(out[:]) n = h.rootNode()
}
wordsToBytes(compressNode(n), &out)
return return
} }
@ -473,10 +240,8 @@ func (or *OutputReader) Read(p []byte) (int, error) {
for len(p) > 0 { for len(p) > 0 {
if or.off%blockSize == 0 { if or.off%blockSize == 0 {
or.n.counter = or.off / blockSize or.n.counter = or.off / blockSize
words := or.n.compress() wordsToBytes(compressNode(or.n), &or.block)
wordsToBytes(words, &or.block)
} }
n := copy(p, or.block[or.off%blockSize:]) n := copy(p, or.block[or.off%blockSize:])
p = p[n:] p = p[n:]
or.off += uint64(n) or.off += uint64(n)
@ -510,8 +275,7 @@ func (or *OutputReader) Seek(offset int64, whence int) (int64, error) {
or.off = off or.off = off
or.n.counter = uint64(off) / blockSize or.n.counter = uint64(off) / blockSize
if or.off%blockSize != 0 { if or.off%blockSize != 0 {
words := or.n.compress() wordsToBytes(compressNode(or.n), &or.block)
wordsToBytes(words, &or.block)
} }
// NOTE: or.off >= 2^63 will result in a negative return value. // NOTE: or.off >= 2^63 will result in a negative return value.
// Nothing we can do about this. // Nothing we can do about this.

1311
blake3_amd64.s Normal file

File diff suppressed because it is too large Load Diff

View File

@ -63,7 +63,7 @@ func TestVectors(t *testing.T) {
subKey := make([]byte, len(vec.DeriveKey)/2) subKey := make([]byte, len(vec.DeriveKey)/2)
blake3.DeriveKey(subKey, ctx, in) blake3.DeriveKey(subKey, ctx, in)
if out := toHex(subKey); out != vec.DeriveKey { if out := toHex(subKey); out != vec.DeriveKey {
t.Errorf("output did not match test vector:\n\texpected: %v...\n\t got: %v...", vec.DeriveKey[:10], subKey[:10]) t.Errorf("output did not match test vector:\n\texpected: %v...\n\t got: %v...", vec.DeriveKey[:10], out[:10])
} }
} }
} }
@ -150,7 +150,7 @@ func TestSum(t *testing.T) {
h.Write(in) h.Write(in)
h.Sum(exp256[:0]) h.Sum(exp256[:0])
if got256 := blake3.Sum256(in); exp256 != got256 { if got256 := blake3.Sum256(in); exp256 != got256 {
t.Errorf("Sum256 output did not match Sum output:\n\texpected: %v...\n\t got: %v...", exp256[:10], got256[:10]) t.Errorf("Sum256 output did not match Sum output:\n\texpected: %x...\n\t got: %x...", exp256[:5], got256[:5])
} }
var exp512 [64]byte var exp512 [64]byte
@ -158,7 +158,7 @@ func TestSum(t *testing.T) {
h.Write(in) h.Write(in)
h.Sum(exp512[:0]) h.Sum(exp512[:0])
if got512 := blake3.Sum512(in); exp512 != got512 { if got512 := blake3.Sum512(in); exp512 != got512 {
t.Errorf("Sum512 output did not match Sum output:\n\texpected: %v...\n\t got: %v...", exp512[:10], got512[:10]) t.Errorf("Sum512 output did not match Sum output:\n\texpected: %x...\n\t got: %x...", exp512[:5], got512[:5])
} }
} }
} }
@ -190,13 +190,20 @@ func (nopReader) Read(p []byte) (int, error) { return len(p), nil }
func BenchmarkWrite(b *testing.B) { func BenchmarkWrite(b *testing.B) {
b.ReportAllocs() b.ReportAllocs()
b.SetBytes(1) b.SetBytes(1024)
io.CopyN(blake3.New(0, nil), nopReader{}, int64(b.N)) io.CopyN(blake3.New(0, nil), nopReader{}, int64(b.N*1024))
}
func BenchmarkXOF(b *testing.B) {
b.ReportAllocs()
b.SetBytes(1024)
io.CopyN(ioutil.Discard, blake3.New(0, nil).XOF(), int64(b.N*1024))
} }
func BenchmarkSum256(b *testing.B) { func BenchmarkSum256(b *testing.B) {
b.Run("64", func(b *testing.B) { b.Run("64", func(b *testing.B) {
b.ReportAllocs() b.ReportAllocs()
b.SetBytes(64)
buf := make([]byte, 64) buf := make([]byte, 64)
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
blake3.Sum256(buf) blake3.Sum256(buf)
@ -204,6 +211,7 @@ func BenchmarkSum256(b *testing.B) {
}) })
b.Run("1024", func(b *testing.B) { b.Run("1024", func(b *testing.B) {
b.ReportAllocs() b.ReportAllocs()
b.SetBytes(1024)
buf := make([]byte, 1024) buf := make([]byte, 1024)
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
blake3.Sum256(buf) blake3.Sum256(buf)
@ -211,15 +219,10 @@ func BenchmarkSum256(b *testing.B) {
}) })
b.Run("65536", func(b *testing.B) { b.Run("65536", func(b *testing.B) {
b.ReportAllocs() b.ReportAllocs()
b.SetBytes(65536)
buf := make([]byte, 65536) buf := make([]byte, 65536)
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
blake3.Sum256(buf) blake3.Sum256(buf)
} }
}) })
} }
func BenchmarkXOF(b *testing.B) {
b.ReportAllocs()
b.SetBytes(1)
io.CopyN(ioutil.Discard, blake3.New(0, nil).XOF(), int64(b.N))
}

76
compress_amd64.go Normal file
View File

@ -0,0 +1,76 @@
package blake3
import (
"unsafe"
"golang.org/x/sys/cpu"
)
//go:generate go run avo/gen.go -out blake3_amd64.s
//go:noescape
func compressChunksAVX2(cvs *[8][8]uint32, buf *[8192]byte, key *[8]uint32, counter uint64, flags uint32)
func compressNode(n node) (out [16]uint32) {
compressNodeGeneric(&out, n)
return
}
func compressBufferLarge(buf *[8192]byte, buflen int, key *[8]uint32, counter uint64, flags uint32) node {
var cvs [8][8]uint32
compressChunksAVX2(&cvs, buf, key, counter, flags)
numChunks := uint64(buflen / chunkSize)
if buflen%chunkSize != 0 {
// use non-asm for remainder
partialChunk := buf[buflen-buflen%chunkSize : buflen]
cvs[numChunks] = chainingValue(compressChunk(partialChunk, key, counter+numChunks, flags))
numChunks++
}
return mergeSubtrees(cvs[:numChunks], key, flags)
}
func compressBuffer(buf *[8192]byte, buflen int, key *[8]uint32, counter uint64, flags uint32) node {
switch {
case cpu.X86.HasAVX2 && buflen >= chunkSize*2:
return compressBufferLarge(buf, buflen, key, counter, flags)
default:
return compressBufferGeneric(buf, buflen, key, counter, flags)
}
}
func compressChunk(chunk []byte, key *[8]uint32, counter uint64, flags uint32) node {
n := node{
cv: *key,
counter: counter,
blockLen: blockSize,
flags: flags | flagChunkStart,
}
blockBytes := (*[64]byte)(unsafe.Pointer(&n.block))[:]
for len(chunk) > blockSize {
copy(blockBytes, chunk)
chunk = chunk[blockSize:]
n.cv = chainingValue(n)
n.flags &^= flagChunkStart
}
// pad last block with zeros
n.block = [16]uint32{}
copy(blockBytes, chunk)
n.blockLen = uint32(len(chunk))
n.flags |= flagChunkEnd
return n
}
func wordsToBytes(words [16]uint32, block *[64]byte) {
*block = *(*[64]byte)(unsafe.Pointer(&words))
}
func hashBlock(out *[64]byte, buf []byte) {
var block [16]uint32
copy((*[64]byte)(unsafe.Pointer(&block))[:], buf)
compressNodeGeneric((*[16]uint32)(unsafe.Pointer(out)), node{
cv: iv,
block: block,
blockLen: uint32(len(buf)),
flags: flagChunkStart | flagChunkEnd | flagRoot,
})
}

150
compress_generic.go Normal file
View File

@ -0,0 +1,150 @@
package blake3
import (
"bytes"
"math/bits"
)
func g(a, b, c, d, mx, my uint32) (uint32, uint32, uint32, uint32) {
a += b + mx
d = bits.RotateLeft32(d^a, -16)
c += d
b = bits.RotateLeft32(b^c, -12)
a += b + my
d = bits.RotateLeft32(d^a, -8)
c += d
b = bits.RotateLeft32(b^c, -7)
return a, b, c, d
}
func compressNodeGeneric(out *[16]uint32, n node) {
// NOTE: we unroll all of the rounds, as well as the permutations that occur
// between rounds.
// round 1 (also initializes state)
// columns
s0, s4, s8, s12 := g(n.cv[0], n.cv[4], iv[0], uint32(n.counter), n.block[0], n.block[1])
s1, s5, s9, s13 := g(n.cv[1], n.cv[5], iv[1], uint32(n.counter>>32), n.block[2], n.block[3])
s2, s6, s10, s14 := g(n.cv[2], n.cv[6], iv[2], n.blockLen, n.block[4], n.block[5])
s3, s7, s11, s15 := g(n.cv[3], n.cv[7], iv[3], n.flags, n.block[6], n.block[7])
// diagonals
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[8], n.block[9])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[10], n.block[11])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[12], n.block[13])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[14], n.block[15])
// round 2
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[2], n.block[6])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[3], n.block[10])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[7], n.block[0])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[4], n.block[13])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[1], n.block[11])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[12], n.block[5])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[9], n.block[14])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[15], n.block[8])
// round 3
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[3], n.block[4])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[10], n.block[12])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[13], n.block[2])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[7], n.block[14])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[6], n.block[5])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[9], n.block[0])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[11], n.block[15])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[8], n.block[1])
// round 4
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[10], n.block[7])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[12], n.block[9])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[14], n.block[3])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[13], n.block[15])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[4], n.block[0])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[11], n.block[2])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[5], n.block[8])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[1], n.block[6])
// round 5
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[12], n.block[13])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[9], n.block[11])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[15], n.block[10])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[14], n.block[8])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[7], n.block[2])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[5], n.block[3])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[0], n.block[1])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[6], n.block[4])
// round 6
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[9], n.block[14])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[11], n.block[5])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[8], n.block[12])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[15], n.block[1])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[13], n.block[3])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[0], n.block[10])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[2], n.block[6])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[4], n.block[7])
// round 7
s0, s4, s8, s12 = g(s0, s4, s8, s12, n.block[11], n.block[15])
s1, s5, s9, s13 = g(s1, s5, s9, s13, n.block[5], n.block[0])
s2, s6, s10, s14 = g(s2, s6, s10, s14, n.block[1], n.block[9])
s3, s7, s11, s15 = g(s3, s7, s11, s15, n.block[8], n.block[6])
s0, s5, s10, s15 = g(s0, s5, s10, s15, n.block[14], n.block[10])
s1, s6, s11, s12 = g(s1, s6, s11, s12, n.block[2], n.block[12])
s2, s7, s8, s13 = g(s2, s7, s8, s13, n.block[3], n.block[4])
s3, s4, s9, s14 = g(s3, s4, s9, s14, n.block[7], n.block[13])
// finalization
*out = [16]uint32{
s0 ^ s8, s1 ^ s9, s2 ^ s10, s3 ^ s11,
s4 ^ s12, s5 ^ s13, s6 ^ s14, s7 ^ s15,
s8 ^ n.cv[0], s9 ^ n.cv[1], s10 ^ n.cv[2], s11 ^ n.cv[3],
s12 ^ n.cv[4], s13 ^ n.cv[5], s14 ^ n.cv[6], s15 ^ n.cv[7],
}
}
func compressBufferGeneric(buf *[8192]byte, buflen int, key *[8]uint32, counter uint64, flags uint32) (n node) {
if buflen <= chunkSize {
return compressChunk(buf[:buflen], key, counter, flags)
}
cvs := make([][8]uint32, 0, 8)
for bb := bytes.NewBuffer(buf[:buflen]); bb.Len() > 0; {
n := compressChunk(bb.Next(chunkSize), key, counter, flags)
cvs = append(cvs, chainingValue(n))
counter++
}
return mergeSubtrees(cvs, key, flags)
}
func chainingValue(n node) (cv [8]uint32) {
full := compressNode(n)
copy(cv[:], full[:])
return
}
func mergeSubtrees(cvs [][8]uint32, key *[8]uint32, flags uint32) node {
parent := func(l, r [8]uint32) [8]uint32 {
return chainingValue(parentNode(l, r, *key, flags))
}
switch len(cvs) {
case 8:
cvs[6] = parent(cvs[6], cvs[7])
fallthrough
case 7:
cvs[4], cvs[5] = parent(cvs[4], cvs[5]), cvs[6]
fallthrough
case 6:
cvs[4] = parent(cvs[4], cvs[5])
fallthrough
case 5:
fallthrough
case 4:
cvs[2] = parent(cvs[2], cvs[3])
fallthrough
case 3:
cvs[0], cvs[1] = parent(cvs[0], cvs[1]), cvs[2]
}
if len(cvs) > 4 {
cvs[0], cvs[1] = parent(cvs[0], cvs[1]), cvs[4]
}
return parentNode(cvs[0], cvs[1], *key, flags)
}

64
compress_noasm.go Normal file
View File

@ -0,0 +1,64 @@
// +build !amd64
package blake3
import "encoding/binary"
func compressNode(n node) (out [16]uint32) {
compressNodeGeneric(&out, n)
return
}
func compressBuffer(buf *[8192]byte, length int, key *[8]uint32, counter uint64, flags uint32) node {
return compressBufferGeneric(buf, length, key, counter, flags)
}
func compressChunk(chunk []byte, key *[8]uint32, counter uint64, flags uint32) node {
n := node{
cv: *key,
counter: counter,
blockLen: blockSize,
flags: flags | flagChunkStart,
}
var block [blockSize]byte
for len(chunk) > blockSize {
copy(block[:], chunk)
chunk = chunk[blockSize:]
bytesToWords(block, &n.block)
n.cv = chainingValue(n)
n.flags &^= flagChunkStart
}
// pad last block with zeros
block = [blockSize]byte{}
n.blockLen = uint32(len(chunk))
copy(block[:], chunk)
bytesToWords(block, &n.block)
n.flags |= flagChunkEnd
return n
}
func hashBlock(out *[64]byte, buf []byte) {
var block [64]byte
var words [16]uint32
copy(block[:], buf)
bytesToWords(block, &words)
compressNodeGeneric(&words, node{
cv: iv,
block: words,
blockLen: uint32(len(buf)),
flags: flagChunkStart | flagChunkEnd | flagRoot,
})
wordsToBytes(words, out)
}
func bytesToWords(bytes [64]byte, words *[16]uint32) {
for i := range words {
words[i] = binary.LittleEndian.Uint32(bytes[4*i:])
}
}
func wordsToBytes(words [16]uint32, block *[64]byte) {
for i, w := range words {
binary.LittleEndian.PutUint32(block[4*i:], w)
}
}

2
go.mod
View File

@ -1,3 +1,5 @@
module lukechampine.com/blake3 module lukechampine.com/blake3
go 1.13 go 1.13
require golang.org/x/sys v0.0.0-20200202164722-d101bd2416d5

2
go.sum Normal file
View File

@ -0,0 +1,2 @@
golang.org/x/sys v0.0.0-20200202164722-d101bd2416d5 h1:LfCXLvNmTYH9kEmVgqbnsWfruoXZIrh4YBgqVHtDvw0=
golang.org/x/sys v0.0.0-20200202164722-d101bd2416d5/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=