flesh out some docstrings/comments

This commit is contained in:
lukechampine 2020-01-11 20:09:16 -05:00
parent 72d3c39081
commit 6ff1174970
1 changed files with 98 additions and 58 deletions

156
blake3.go
View File

@ -1,7 +1,4 @@
// Package blake3 implements the BLAKE3 cryptographic hash function. // Package blake3 implements the BLAKE3 cryptographic hash function.
//
// This is a direct port of the Rust reference implementation. It is not
// optimized for performance.
package blake3 package blake3
import ( import (
@ -34,6 +31,21 @@ var iv = [8]uint32{
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
} }
// helper functions for converting between bytes and BLAKE3 "words"
func bytesToWords(bytes []byte, words []uint32) {
for i := range words {
words[i] = binary.LittleEndian.Uint32(bytes[i*4:])
}
}
func wordsToBytes(words []uint32, bytes []byte) {
for i, w := range words {
binary.LittleEndian.PutUint32(bytes[i*4:], w)
}
}
// The g function, split into two parts so that the compiler will inline it.
func gx(state *[16]uint32, a, b, c, d int, mx uint32) { func gx(state *[16]uint32, a, b, c, d int, mx uint32) {
state[a] += state[b] + mx state[a] += state[b] + mx
state[d] = bits.RotateLeft32(state[d]^state[a], -16) state[d] = bits.RotateLeft32(state[d]^state[a], -16)
@ -79,17 +91,29 @@ func permute(m *[16]uint32) {
} }
} }
// Each chunk or parent node can produce either an 8-word chaining value or, by // A node represents a chunk or parent in the BLAKE3 Merkle tree. In BLAKE3
// setting flagRoot, any number of final output bytes. The node struct // terminology, the elements of the bottom layer (aka "leaves") of the tree are
// captures the state just prior to choosing between those two possibilities. // called chunk nodes, and the elements of upper layers (aka "interior nodes")
// are called parent nodes.
//
// Computing a BLAKE3 hash involves splitting the input into chunk nodes, then
// repeatedly merging these nodes into parent nodes, until only a single "root"
// node remains. The root node can then be used to generate up to 2^64 - 1 bytes
// of pseudorandom output.
type node struct { type node struct {
cv [8]uint32 // the chaining value from the previous state
cv [8]uint32
// the current state
block [16]uint32 block [16]uint32
counter uint64 counter uint64
blockLen uint32 blockLen uint32
flags uint32 flags uint32
} }
// compress is the core hash function, generating 16 pseudorandom words from a
// node. When nodes are being merged into parents, only the first 8 words are
// used. When the root node is being used to generate output, the full 16 words
// are used.
func (n node) compress() [16]uint32 { func (n node) compress() [16]uint32 {
state := [16]uint32{ state := [16]uint32{
n.cv[0], n.cv[1], n.cv[2], n.cv[3], n.cv[0], n.cv[1], n.cv[2], n.cv[3],
@ -119,25 +143,19 @@ func (n node) compress() [16]uint32 {
return state return state
} }
// chainingValue returns the first 8 words of the compressed node. This is used
// in two places. First, when a chunk node is being constructed, its cv is
// overwritten with this value after each block of input is processed. Second,
// when two nodes are merged into a parent, each of their chaining values
// supplies half of the new node's block. Second, when
func (n node) chainingValue() (cv [8]uint32) { func (n node) chainingValue() (cv [8]uint32) {
full := n.compress() full := n.compress()
copy(cv[:], full[:8]) copy(cv[:], full[:8])
return return
} }
func bytesToWords(bytes []byte, words []uint32) { // An OutputReader produces an seekable stream of 2^64 - 1 pseudorandom output
for i := range words { // bytes.
words[i] = binary.LittleEndian.Uint32(bytes[i*4:])
}
}
func wordsToBytes(words []uint32, bytes []byte) {
for i, w := range words {
binary.LittleEndian.PutUint32(bytes[i*4:], w)
}
}
// An OutputReader produces an seekable stream of 2^64 - 1 output bytes.
type OutputReader struct { type OutputReader struct {
n node n node
block [blockSize]byte block [blockSize]byte
@ -201,6 +219,7 @@ func (or *OutputReader) Seek(offset int64, whence int) (int64, error) {
return int64(or.off), nil return int64(or.off), nil
} }
// chunkState manages the state involved in hashing a single chunk of input.
type chunkState struct { type chunkState struct {
n node n node
block [blockSize]byte block [blockSize]byte
@ -208,24 +227,30 @@ type chunkState struct {
bytesConsumed int bytesConsumed int
} }
// chunkCounter is the index of this chunk, i.e. the number of chunks that have
// been processed prior to this one.
func (cs *chunkState) chunkCounter() uint64 { func (cs *chunkState) chunkCounter() uint64 {
return cs.n.counter return cs.n.counter
} }
// update incorporates input into the chunkState.
func (cs *chunkState) update(input []byte) { func (cs *chunkState) update(input []byte) {
for len(input) > 0 { for len(input) > 0 {
// If the block buffer is full, compress it and clear it. More // If the block buffer is full, compress it and clear it. More
// input is coming, so this compression is not flagChunkEnd. // input is coming, so this compression is not flagChunkEnd.
if cs.blockLen == blockSize { if cs.blockLen == blockSize {
// copy the chunk block (bytes) into the node block and chain it.
bytesToWords(cs.block[:], cs.n.block[:]) bytesToWords(cs.block[:], cs.n.block[:])
cs.n.cv = cs.n.chainingValue() cs.n.cv = cs.n.chainingValue()
// clear the start flag for all but the first block
cs.n.flags &^= flagChunkStart
// reset the chunk block. It must contain zeros, because BLAKE3
// blocks are zero-padded.
cs.block = [blockSize]byte{} cs.block = [blockSize]byte{}
cs.blockLen = 0 cs.blockLen = 0
// After the first chunk has been compressed, clear the start flag.
cs.n.flags &^= flagChunkStart
} }
// Copy input bytes into the block buffer. // Copy input bytes into the chunk block.
n := copy(cs.block[cs.blockLen:], input) n := copy(cs.block[cs.blockLen:], input)
cs.blockLen += n cs.blockLen += n
cs.bytesConsumed += n cs.bytesConsumed += n
@ -233,6 +258,8 @@ func (cs *chunkState) update(input []byte) {
} }
} }
// node returns a node containing the chunkState's current state, with the
// ChunkEnd flag set.
func (cs *chunkState) node() node { func (cs *chunkState) node() node {
n := cs.n n := cs.n
bytesToWords(cs.block[:], n.block[:]) bytesToWords(cs.block[:], n.block[:])
@ -241,18 +268,20 @@ func (cs *chunkState) node() node {
return n return n
} }
func newChunkState(key [8]uint32, chunkCounter uint64, flags uint32) chunkState { func newChunkState(iv [8]uint32, chunkCounter uint64, flags uint32) chunkState {
return chunkState{ return chunkState{
n: node{ n: node{
cv: key, cv: iv,
counter: chunkCounter, counter: chunkCounter,
blockLen: blockSize, blockLen: blockSize,
// compress the first chunk with the start flag set // compress the first block with the start flag set
flags: flags | flagChunkStart, flags: flags | flagChunkStart,
}, },
} }
} }
// parentNode returns a node that incorporates the chaining values of two child
// nodes.
func parentNode(left, right [8]uint32, key [8]uint32, flags uint32) node { func parentNode(left, right [8]uint32, key [8]uint32, flags uint32) node {
var blockWords [16]uint32 var blockWords [16]uint32
copy(blockWords[:8], left[:]) copy(blockWords[:8], left[:])
@ -260,8 +289,8 @@ func parentNode(left, right [8]uint32, key [8]uint32, flags uint32) node {
return node{ return node{
cv: key, cv: key,
block: blockWords, block: blockWords,
counter: 0, // Always 0 for parent nodes. counter: 0, // counter is reset for parents
blockLen: blockSize, // Always blockSize (64) for parent nodes. blockLen: blockSize, // block is full: 8 words from left, 8 from right
flags: flags | flagParent, flags: flags | flagParent,
} }
} }
@ -271,7 +300,7 @@ type Hasher struct {
cs chunkState cs chunkState
key [8]uint32 key [8]uint32
chainStack [54][8]uint32 // space for 54 subtrees (2^54 * chunkSize = 2^64) chainStack [54][8]uint32 // space for 54 subtrees (2^54 * chunkSize = 2^64)
stackSize int // index within chainStack stackSize int // number of chainStack elements that are valid
flags uint32 flags uint32
size int // output size, for Sum size int // output size, for Sum
} }
@ -296,14 +325,15 @@ func New(size int, key []byte) *Hasher {
return newHasher(keyWords, flagKeyedHash, size) return newHasher(keyWords, flagKeyedHash, size)
} }
// addChunkChainingValue appends a chunk to the right edge of the Merkle tree.
func (h *Hasher) addChunkChainingValue(cv [8]uint32, totalChunks uint64) { func (h *Hasher) addChunkChainingValue(cv [8]uint32, totalChunks uint64) {
// This chunk might complete some subtrees. For each completed subtree, // This chunk might complete some subtrees. For each completed subtree, its
// its left child will be the current top entry in the CV stack, and // left child will be the current top entry in the CV stack, and its right
// its right child will be the current value of `cv`. Pop each left // child will be the current value of cv. Pop each left child off the stack,
// child off the stack, merge it with `cv`, and overwrite `cv` // merge it with cv, and overwrite cv with the result. After all these
// with the result. After all these merges, push the final value of // merges, push the final value of cv onto the stack. The number of
// `cv` onto the stack. The number of completed subtrees is given // completed subtrees is given by the number of trailing 0-bits in the new
// by the number of trailing 0-bits in the new total number of chunks. // total number of chunks.
for totalChunks&1 == 0 { for totalChunks&1 == 0 {
// pop and merge // pop and merge
h.stackSize-- h.stackSize--
@ -314,7 +344,9 @@ func (h *Hasher) addChunkChainingValue(cv [8]uint32, totalChunks uint64) {
h.stackSize++ h.stackSize++
} }
func (h *Hasher) finalNode() node { // rootNode computes the root of the Merkle tree. It does not modify the
// chainStack.
func (h *Hasher) rootNode() node {
// Starting with the node from the current chunk, compute all the // Starting with the node from the current chunk, compute all the
// parent chaining values along the right edge of the tree, until we // parent chaining values along the right edge of the tree, until we
// have the root node. // have the root node.
@ -342,8 +374,9 @@ func (h *Hasher) Size() int { return h.size }
func (h *Hasher) Write(p []byte) (int, error) { func (h *Hasher) Write(p []byte) (int, error) {
lenp := len(p) lenp := len(p)
for len(p) > 0 { for len(p) > 0 {
// If the current chunk is complete, finalize it and reset the // If the current chunk is complete, finalize it and add it to the tree,
// chunk state. More input is coming, so this chunk is not flagRoot. // then reset the chunk state (but keep incrementing the counter across
// chunks).
if h.cs.bytesConsumed == chunkSize { if h.cs.bytesConsumed == chunkSize {
cv := h.cs.node().chainingValue() cv := h.cs.node().chainingValue()
totalChunks := h.cs.chunkCounter() + 1 totalChunks := h.cs.chunkCounter() + 1
@ -363,16 +396,24 @@ func (h *Hasher) Write(p []byte) (int, error) {
} }
// Sum implements hash.Hash. // Sum implements hash.Hash.
func (h *Hasher) Sum(b []byte) []byte { func (h *Hasher) Sum(b []byte) (sum []byte) {
ret, fill := sliceForAppend(b, h.Size()) // We need to append h.Size() bytes to b. Reuse b's capacity if possible;
h.XOF().Read(fill) // otherwise, allocate a new slice.
return ret if total := len(b) + h.Size(); cap(b) >= total {
sum = b[:total]
} else {
sum = make([]byte, total)
copy(sum, b)
}
// Read into the appended portion of sum
h.XOF().Read(sum[len(b):])
return
} }
// XOF returns an OutputReader initialized with the current hash state. // XOF returns an OutputReader initialized with the current hash state.
func (h *Hasher) XOF() *OutputReader { func (h *Hasher) XOF() *OutputReader {
return &OutputReader{ return &OutputReader{
n: h.finalNode(), n: h.rootNode(),
} }
} }
@ -392,7 +433,17 @@ func Sum512(b []byte) (out [64]byte) {
return return
} }
// DeriveKey derives a subkey from ctx and srcKey. // DeriveKey derives a subkey from ctx and srcKey. ctx should be hardcoded,
// globally unique, and application-specific. A good format for ctx strings is:
//
// [application] [commit timestamp] [purpose]
//
// e.g.:
//
// example.com 2019-12-25 16:18:03 session tokens v1
//
// The purpose of these requirements is to ensure that an attacker cannot trick
// two different applications into using the same context string.
func DeriveKey(subKey []byte, ctx string, srcKey []byte) { func DeriveKey(subKey []byte, ctx string, srcKey []byte) {
// construct the derivation Hasher // construct the derivation Hasher
const derivationIVLen = 32 const derivationIVLen = 32
@ -400,22 +451,11 @@ func DeriveKey(subKey []byte, ctx string, srcKey []byte) {
h.Write([]byte(ctx)) h.Write([]byte(ctx))
var derivationIV [8]uint32 var derivationIV [8]uint32
bytesToWords(h.Sum(make([]byte, 0, derivationIVLen)), derivationIV[:]) bytesToWords(h.Sum(make([]byte, 0, derivationIVLen)), derivationIV[:])
h = newHasher(derivationIV, flagDeriveKeyMaterial, len(subKey)) h = newHasher(derivationIV, flagDeriveKeyMaterial, 0)
// derive the subKey // derive the subKey
h.Write(srcKey) h.Write(srcKey)
h.Sum(subKey[:0]) h.XOF().Read(subKey)
} }
// ensure that Hasher implements hash.Hash // ensure that Hasher implements hash.Hash
var _ hash.Hash = (*Hasher)(nil) var _ hash.Hash = (*Hasher)(nil)
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}