Go to file
juanelas fb6518b883 2.0.3 2020-04-07 12:56:19 +02:00
build Now the documentation supports esnext literals. Fixed typos in README 2020-04-07 12:55:27 +02:00
lib Now the documentation supports esnext literals. Fixed typos in README 2020-04-07 12:55:27 +02:00
src Now the documentation supports esnext literals. Fixed typos in README 2020-04-07 12:55:27 +02:00
test better structure and code 2020-04-07 00:49:13 +02:00
types better structure and code 2020-04-07 00:49:13 +02:00
.gitignore better structure and code 2020-04-07 00:49:13 +02:00
.npmignore addded IntelliJ 2020-04-07 00:51:13 +02:00
INSTRUCTIONS.md better structure and code 2020-04-07 00:49:13 +02:00
LICENSE first commit 2019-03-17 09:40:35 +01:00
README.md Now the documentation supports esnext literals. Fixed typos in README 2020-04-07 12:55:27 +02:00
package-lock.json 2.0.3 2020-04-07 12:56:19 +02:00
package.json 2.0.3 2020-04-07 12:56:19 +02:00

README.md

JavaScript Style Guide

bigint-mod-arith

Some extra functions to work with modular arithmetic using native JS (ES-2020) implementation of BigInt. It can be used by any Web Browser or webview supporting BigInt and with Node.js (>=10.4.0).

The operations supported on BigInts are not constant time. BigInt can be therefore unsuitable for use in cryptography. Many platforms provide native support for cryptography, such as Web Cryptography API or Node.js Crypto.

Installation

bigint-mod-arith is distributed for web browsers and/or webviews supporting BigInt as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.

bigint-mod-arith can be imported to your project with npm:

npm install bigint-mod-arith

NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.

For web browsers, you can also directly download the IIFE bundle or the ES6 bundle module from GitHub.

Usage example

Import your module as :

  • Node.js
    const bigintModArith = require('bigint-mod-arith')
    ... // your code here
    
  • JavaScript native project
    import * as bigintModArith from 'bigint-mod-arith'
    ... // your code here
    
  • JavaScript native browser ES6 mod
    <script type="module">
      import * as bigintModArith from 'lib/index.browser.bundle.mod.js'  // Use you actual path to the browser mod bundle
      ... // your code here
    </script>
    
  • JavaScript native browser IIFE
    <script src="../../lib/index.browser.bundle.js"></script> <!-- Use you actual path to the browser bundle -->
    <script>
      ... // your code here
    </script>
    
  • TypeScript
    import * as bigintModArith from 'bigint-mod-arith'
    ... // your code here
    

    BigInt is ES-2020. In order to use it with TypeScript you should set lib (and probably also target and module) to esnext in tsconfig.json.

/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
or the shorter syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
*/
const a = BigInt('5')
const b = BigInt('2')
const n = 19n

console.log(bigintModArith.modPow(a, b, n)) // prints 6

console.log(bigintModArith.modInv(2n, 5n)) // prints 3

console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))) // prints 2

JS Doc

abs(a) ⇒ bigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

Kind: global function
Returns: bigint - the absolute value of a

Param Type
a number | bigint

bitLength(a) ⇒ number

Returns the bitlength of a number

Kind: global function
Returns: number - - the bit length

Param Type
a number | bigint

eGcd(a, b) ⇒ egcdReturn

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global function
Returns: egcdReturn - A triple (g, x, y), such that ax + by = g = gcd(a, b).

Param Type
a number | bigint
b number | bigint

gcd(a, b) ⇒ bigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

Kind: global function
Returns: bigint - The greatest common divisor of a and b

Param Type
a number | bigint
b number | bigint

lcm(a, b) ⇒ bigint

The least common multiple computed as abs(a*b)/gcd(a,b)

Kind: global function
Returns: bigint - The least common multiple of a and b

Param Type
a number | bigint
b number | bigint

max(a, b) ⇒ bigint

Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b

Kind: global function
Returns: bigint - maximum of numbers a and b

Param Type
a number | bigint
b number | bigint

min(a, b) ⇒ bigint

Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b

Kind: global function
Returns: bigint - minimum of numbers a and b

Param Type
a number | bigint
b number | bigint

modInv(a, n) ⇒ bigint

Modular inverse.

Kind: global function
Returns: bigint - the inverse modulo n or NaN if it does not exist

Param Type Description
a number | bigint The number to find an inverse for
n number | bigint The modulo

modPow(b, e, n) ⇒ bigint

Modular exponentiation b**e mod n. Currently using the right-to-left binary method

Kind: global function
Returns: bigint - b**e mod n

Param Type Description
b number | bigint base
e number | bigint exponent
n number | bigint modulo

toZn(a, n) ⇒ bigint

Finds the smallest positive element that is congruent to a in modulo n

Kind: global function
Returns: bigint - The smallest positive representation of a in modulo n

Param Type Description
a number | bigint An integer
n number | bigint The modulo

egcdReturn : Object

A triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global typedef
Properties

Name Type
g bigint
x bigint
y bigint