102 lines
3.0 KiB
TypeScript
102 lines
3.0 KiB
TypeScript
/**
|
|
* A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
*/
|
|
export type egcdReturn = {
|
|
g: bigint;
|
|
x: bigint;
|
|
y: bigint;
|
|
};
|
|
/**
|
|
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
|
|
*
|
|
* @param {number|bigint} a
|
|
*
|
|
* @returns {bigint} the absolute value of a
|
|
*/
|
|
export function abs(a: number | bigint): bigint;
|
|
/**
|
|
* Returns the bitlength of a number
|
|
*
|
|
* @param {number|bigint} a
|
|
* @returns {number} - the bit length
|
|
*/
|
|
export function bitLength(a: number | bigint): number;
|
|
/**
|
|
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
* @property {bigint} g
|
|
* @property {bigint} x
|
|
* @property {bigint} y
|
|
*/
|
|
/**
|
|
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
|
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
*
|
|
* @param {number|bigint} a
|
|
* @param {number|bigint} b
|
|
*
|
|
* @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
*/
|
|
export function eGcd(a: number | bigint, b: number | bigint): egcdReturn;
|
|
/**
|
|
* Greatest-common divisor of two integers based on the iterative binary algorithm.
|
|
*
|
|
* @param {number|bigint} a
|
|
* @param {number|bigint} b
|
|
*
|
|
* @returns {bigint} The greatest common divisor of a and b
|
|
*/
|
|
export function gcd(a: number | bigint, b: number | bigint): bigint;
|
|
/**
|
|
* The least common multiple computed as abs(a*b)/gcd(a,b)
|
|
* @param {number|bigint} a
|
|
* @param {number|bigint} b
|
|
*
|
|
* @returns {bigint} The least common multiple of a and b
|
|
*/
|
|
export function lcm(a: number | bigint, b: number | bigint): bigint;
|
|
/**
|
|
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
|
|
*
|
|
* @param {number|bigint} a
|
|
* @param {number|bigint} b
|
|
*
|
|
* @returns {bigint} maximum of numbers a and b
|
|
*/
|
|
export function max(a: number | bigint, b: number | bigint): bigint;
|
|
/**
|
|
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
|
|
*
|
|
* @param {number|bigint} a
|
|
* @param {number|bigint} b
|
|
*
|
|
* @returns {bigint} minimum of numbers a and b
|
|
*/
|
|
export function min(a: number | bigint, b: number | bigint): bigint;
|
|
/**
|
|
* Modular inverse.
|
|
*
|
|
* @param {number|bigint} a The number to find an inverse for
|
|
* @param {number|bigint} n The modulo
|
|
*
|
|
* @returns {bigint} the inverse modulo n or NaN if it does not exist
|
|
*/
|
|
export function modInv(a: number | bigint, n: number | bigint): bigint;
|
|
/**
|
|
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
|
|
*
|
|
* @param {number|bigint} b base
|
|
* @param {number|bigint} e exponent
|
|
* @param {number|bigint} n modulo
|
|
*
|
|
* @returns {bigint} b**e mod n
|
|
*/
|
|
export function modPow(b: number | bigint, e: number | bigint, n: number | bigint): bigint;
|
|
/**
|
|
* Finds the smallest positive element that is congruent to a in modulo n
|
|
* @param {number|bigint} a An integer
|
|
* @param {number|bigint} n The modulo
|
|
*
|
|
* @returns {bigint} The smallest positive representation of a in modulo n
|
|
*/
|
|
export function toZn(a: number | bigint, n: number | bigint): bigint;
|