# bigint-mod-arith Some extra functions to work with modular arithmetics using native JS (stage 3) implementation of BigInt. It can be used with Node.js (starting in version 10.4.0) and [Web Browsers supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility). If you are looking for a cryptographically secure random generator and for probale primes (generation and testing), you may be interested in [bigint-secrets](https://github.com/juanelas/bigint-secrets) _The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html)**_ Many platforms provide native support for cryptography, such as [webcrypto](https://w3c.github.io/webcrypto/Overview.html) or [node crypto](https://nodejs.org/dist/latest/docs/api/crypto.html). ## Installation bigint-mod-arith is distributed as both an ES6 and a CJS module. The ES6 module is built for any [web browser supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility). The module only uses native javascript implementations and no polyfills had been applied. The CJS module is built as a standard node module. bigint-mod-arith can be imported to your project with `npm`: ```bash npm install bigint-mod-arith ``` For web brosers, you can also [download the bundle from GitHub](https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/dist/bigint-mod-arith-latest.browser.mod.min.js) or just hotlink to it: ```html ``` ## Usage examples ```javascript const bigintModArith = require('bigint-mod-arith'); // Stage 3 BigInts with value 666 can be declared as BigInt('666') // or the shorte no-linter-friendly new syntax 666n let a = BigInt('5'); let b = BigInt('2'); let n = BigInt('19'); console.log(bigintModArith.modPow(a, b, n)); // prints 6 console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3 console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2 ``` # bigint-mod-arith JS Doc ## Functions
abs(a)bigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

gcd(a, b)bigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

lcm(a, b)bigint

The least common multiple computed as abs(a*b)/gcd(a,b)

toZn(a, n)bigint

Finds the smallest positive element that is congruent to a in modulo n

eGcd(a, b)egcdReturn

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

modInv(a, n)bigint

Modular inverse.

modPow(a, b, n)bigint

Modular exponentiation a**b mod n

## Typedefs
egcdReturn : Object

A triple (g, x, y), such that ax + by = g = gcd(a, b).

## abs(a) ⇒ bigint Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 **Kind**: global function **Returns**: bigint - the absolute value of a | Param | Type | | --- | --- | | a | number \| bigint | ## gcd(a, b) ⇒ bigint Greatest-common divisor of two integers based on the iterative binary algorithm. **Kind**: global function **Returns**: bigint - The greatest common divisor of a and b | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ## lcm(a, b) ⇒ bigint The least common multiple computed as abs(a*b)/gcd(a,b) **Kind**: global function **Returns**: bigint - The least common multiple of a and b | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ## toZn(a, n) ⇒ bigint Finds the smallest positive element that is congruent to a in modulo n **Kind**: global function **Returns**: bigint - The smallest positive representation of a in modulo n | Param | Type | Description | | --- | --- | --- | | a | number \| bigint | An integer | | n | number \| bigint | The modulo | ## eGcd(a, b) ⇒ [egcdReturn](#egcdReturn) An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). **Kind**: global function | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ## modInv(a, n) ⇒ bigint Modular inverse. **Kind**: global function **Returns**: bigint - the inverse modulo n | Param | Type | Description | | --- | --- | --- | | a | number \| bigint | The number to find an inverse for | | n | number \| bigint | The modulo | ## modPow(a, b, n) ⇒ bigint Modular exponentiation a**b mod n **Kind**: global function **Returns**: bigint - a**b mod n | Param | Type | Description | | --- | --- | --- | | a | number \| bigint | base | | b | number \| bigint | exponent | | n | number \| bigint | modulo | ## egcdReturn : Object A triple (g, x, y), such that ax + by = g = gcd(a, b). **Kind**: global typedef **Properties** | Name | Type | | --- | --- | | g | bigint | | x | bigint | | y | bigint | * * *