[![JavaScript Style Guide](https://img.shields.io/badge/code_style-standard-brightgreen.svg)](https://standardjs.com) # bigint-mod-arith Some extra functions to work with modular arithmetic using native JS ([ES-2020](https://tc39.es/ecma262/#sec-bigint-objects)) implementation of BigInt. It can be used by any [Web Browser or webview supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) and with Node.js (>=10.4.0). > The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html). ## Installation bigint-mod-arith is distributed for [web browsers and/or webviews supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module. bigint-mod-arith can be imported to your project with `npm`: ```bash npm install bigint-mod-arith ``` NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js. For web browsers, you can also directly download the [IIFE bundle](https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/lib/index.browser.bundle.js) or the [ES6 bundle module](https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/lib/index.browser.bundle.mod.js) from GitHub. ## Usage example Import your module as : - Node.js ```javascript const bigintCryptoUtils = require('bigint-mod-arith') ... // your code here ``` - JavaScript native project ```javascript import * as bigintCryptoUtils from 'bigint-mod-arith' ... // your code here ``` - Javascript native browser ES6 mod ```html import as bcu from 'bigint-mod-arith' ... // your code here ``` - JavaScript native browser IIFE ```html - TypeScript ```typescript import * as bigintCryptoUtils from 'bigint-mod-arith' ... // your code here ``` > BigInt is [ES-2020](https://tc39.es/ecma262/#sec-bigint-objects). In order to use it with TypeScript you should set `lib` (and probably also `target` and `module`) to `esnext` in `tsconfig.json`. ```javascript /* Stage 3 BigInts with value 666 can be declared as BigInt('666') or the shorter new no-so-linter-friendly syntax 666n. Notice that you can also pass a number, e.g. BigInt(666), but it is not recommended since values over 2**53 - 1 won't be safe but no warning will be raised. */ const a = BigInt('5') const b = BigInt('2') const n = BigInt('19') console.log(bigintCryptoUtils.modPow(a, b, n)) // prints 6 console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))) // prints 3 console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))) // prints 2 ``` ## JS Doc ### abs(a) ⇒ bigint Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 **Kind**: global function **Returns**: bigint - the absolute value of a | Param | Type | | --- | --- | | a | number \| bigint | ### bitLength(a) ⇒ number Returns the bitlength of a number **Kind**: global function **Returns**: number - - the bit length | Param | Type | | --- | --- | | a | number \| bigint | ### eGcd(a, b) ⇒ [egcdReturn](#egcdReturn) An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). **Kind**: global function **Returns**: [egcdReturn](#egcdReturn) - A triple (g, x, y), such that ax + by = g = gcd(a, b). | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ### gcd(a, b) ⇒ bigint Greatest-common divisor of two integers based on the iterative binary algorithm. **Kind**: global function **Returns**: bigint - The greatest common divisor of a and b | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ### lcm(a, b) ⇒ bigint The least common multiple computed as abs(a*b)/gcd(a,b) **Kind**: global function **Returns**: bigint - The least common multiple of a and b | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ### max(a, b) ⇒ bigint Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b **Kind**: global function **Returns**: bigint - maximum of numbers a and b | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ### min(a, b) ⇒ bigint Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b **Kind**: global function **Returns**: bigint - minimum of numbers a and b | Param | Type | | --- | --- | | a | number \| bigint | | b | number \| bigint | ### modInv(a, n) ⇒ bigint Modular inverse. **Kind**: global function **Returns**: bigint - the inverse modulo n or NaN if it does not exist | Param | Type | Description | | --- | --- | --- | | a | number \| bigint | The number to find an inverse for | | n | number \| bigint | The modulo | ### modPow(b, e, n) ⇒ bigint Modular exponentiation b**e mod n. Currently using the right-to-left binary method **Kind**: global function **Returns**: bigint - b**e mod n | Param | Type | Description | | --- | --- | --- | | b | number \| bigint | base | | e | number \| bigint | exponent | | n | number \| bigint | modulo | ### toZn(a, n) ⇒ bigint Finds the smallest positive element that is congruent to a in modulo n **Kind**: global function **Returns**: bigint - The smallest positive representation of a in modulo n | Param | Type | Description | | --- | --- | --- | | a | number \| bigint | An integer | | n | number \| bigint | The modulo | ### egcdReturn : Object A triple (g, x, y), such that ax + by = g = gcd(a, b). **Kind**: global typedef **Properties** | Name | Type | | --- | --- | | g | bigint | | x | bigint | | y | bigint |