/** * Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 * * @param a * * @returns The absolute value of a */ function abs(a) { return (a >= 0) ? a : -a; } /** * Returns the bitlength of a number * * @param a * @returns The bit length */ function bitLength(a) { if (typeof a === 'number') a = BigInt(a); if (a === 1n) { return 1; } let bits = 1; do { bits++; } while ((a >>= 1n) > 1n); return bits; } /** * An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. * Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). * * @param a * @param b * * @throws {RangeError} * This excepction is thrown if a or b are less than 0 * * @returns A triple (g, x, y), such that ax + by = g = gcd(a, b). */ function eGcd(a, b) { if (typeof a === 'number') a = BigInt(a); if (typeof b === 'number') b = BigInt(b); if (a <= 0n || b <= 0n) throw new RangeError('a and b MUST be > 0'); // a and b MUST be positive let x = 0n; let y = 1n; let u = 1n; let v = 0n; while (a !== 0n) { const q = b / a; const r = b % a; const m = x - (u * q); const n = y - (v * q); b = a; a = r; x = u; y = v; u = m; v = n; } return { g: b, x: x, y: y }; } /** * Greatest-common divisor of two integers based on the iterative binary algorithm. * * @param a * @param b * * @returns The greatest common divisor of a and b */ function gcd(a, b) { let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a); let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b); if (aAbs === 0n) { return bAbs; } else if (bAbs === 0n) { return aAbs; } let shift = 0n; while (((aAbs | bAbs) & 1n) === 0n) { aAbs >>= 1n; bAbs >>= 1n; shift++; } while ((aAbs & 1n) === 0n) aAbs >>= 1n; do { while ((bAbs & 1n) === 0n) bAbs >>= 1n; if (aAbs > bAbs) { const x = aAbs; aAbs = bAbs; bAbs = x; } bAbs -= aAbs; } while (bAbs !== 0n); // rescale return aAbs << shift; } /** * The least common multiple computed as abs(a*b)/gcd(a,b) * @param a * @param b * * @returns The least common multiple of a and b */ function lcm(a, b) { if (typeof a === 'number') a = BigInt(a); if (typeof b === 'number') b = BigInt(b); if (a === 0n && b === 0n) return BigInt(0); // return abs(a * b) as bigint / gcd(a, b) return abs((a / gcd(a, b)) * b); } /** * Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b * * @param a * @param b * * @returns Maximum of numbers a and b */ function max(a, b) { return (a >= b) ? a : b; } /** * Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b * * @param a * @param b * * @returns Minimum of numbers a and b */ function min(a, b) { return (a >= b) ? b : a; } /** * Finds the smallest positive element that is congruent to a in modulo n * * @remarks * a and b must be the same type, either number or bigint * * @param a - An integer * @param n - The modulo * * @throws {RangeError} * Excpeption thrown when n is not > 0 * * @returns A bigint with the smallest positive representation of a modulo n */ function toZn(a, n) { if (typeof a === 'number') a = BigInt(a); if (typeof n === 'number') n = BigInt(n); if (n <= 0n) { throw new RangeError('n must be > 0'); } const aZn = a % n; return (aZn < 0n) ? aZn + n : aZn; } /** * Modular inverse. * * @param a The number to find an inverse for * @param n The modulo * * @throws {RangeError} * Excpeption thorwn when a does not have inverse modulo n * * @returns The inverse modulo n */ function modInv(a, n) { const egcd = eGcd(toZn(a, n), n); if (egcd.g !== 1n) { throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`); // modular inverse does not exist } else { return toZn(egcd.x, n); } } /** * Modular exponentiation b**e mod n. Currently using the right-to-left binary method * * @param b base * @param e exponent * @param n modulo * * @throws {RangeError} * Excpeption thrown when n is not > 0 * * @returns b**e mod n */ function modPow(b, e, n) { if (typeof b === 'number') b = BigInt(b); if (typeof e === 'number') e = BigInt(e); if (typeof n === 'number') n = BigInt(n); if (n <= 0n) { throw new RangeError('n must be > 0'); } else if (n === 1n) { return 0n; } b = toZn(b, n); if (e < 0n) { return modInv(modPow(b, abs(e), n), n); } let r = 1n; while (e > 0) { if ((e % 2n) === 1n) { r = r * b % n; } e = e / 2n; b = b ** 2n % n; } return r; } export { abs, bitLength, eGcd, gcd, lcm, max, min, modInv, modPow, toZn }; //# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiZXNtLmpzIiwic291cmNlcyI6WyIuLi8uLi9zcmMvdHMvYWJzLnRzIiwiLi4vLi4vc3JjL3RzL2JpdExlbmd0aC50cyIsIi4uLy4uL3NyYy90cy9lZ2NkLnRzIiwiLi4vLi4vc3JjL3RzL2djZC50cyIsIi4uLy4uL3NyYy90cy9sY20udHMiLCIuLi8uLi9zcmMvdHMvbWF4LnRzIiwiLi4vLi4vc3JjL3RzL21pbi50cyIsIi4uLy4uL3NyYy90cy90b1puLnRzIiwiLi4vLi4vc3JjL3RzL21vZEludi50cyIsIi4uLy4uL3NyYy90cy9tb2RQb3cudHMiXSwic291cmNlc0NvbnRlbnQiOm51bGwsIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7QUFNRztBQUNHLFNBQVUsR0FBRyxDQUFFLENBQWdCLEVBQUE7QUFDbkMsSUFBQSxPQUFPLENBQUMsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUE7QUFDMUI7O0FDVEE7Ozs7O0FBS0c7QUFDRyxTQUFVLFNBQVMsQ0FBRSxDQUFnQixFQUFBO0lBQ3pDLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUFFLFFBQUEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUV4QyxJQUFJLENBQUMsS0FBSyxFQUFFLEVBQUU7QUFBRSxRQUFBLE9BQU8sQ0FBQyxDQUFBO0FBQUUsS0FBQTtJQUMxQixJQUFJLElBQUksR0FBRyxDQUFDLENBQUE7SUFDWixHQUFHO0FBQ0QsUUFBQSxJQUFJLEVBQUUsQ0FBQTtBQUNQLEtBQUEsUUFBUSxDQUFDLENBQUMsS0FBSyxFQUFFLElBQUksRUFBRSxFQUFDO0FBQ3pCLElBQUEsT0FBTyxJQUFJLENBQUE7QUFDYjs7QUNWQTs7Ozs7Ozs7Ozs7QUFXRztBQUNhLFNBQUEsSUFBSSxDQUFFLENBQWdCLEVBQUUsQ0FBZ0IsRUFBQTtJQUN0RCxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFBRSxRQUFBLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDeEMsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQUUsUUFBQSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0FBRXhDLElBQUEsSUFBSSxDQUFDLElBQUksRUFBRSxJQUFJLENBQUMsSUFBSSxFQUFFO0FBQUUsUUFBQSxNQUFNLElBQUksVUFBVSxDQUFDLHFCQUFxQixDQUFDLENBQUE7SUFFbkUsSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFBO0lBQ1YsSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFBO0lBQ1YsSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFBO0lBQ1YsSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFBO0lBRVYsT0FBTyxDQUFDLEtBQUssRUFBRSxFQUFFO0FBQ2YsUUFBQSxNQUFNLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO0FBQ2YsUUFBQSxNQUFNLENBQUMsR0FBVyxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ3ZCLE1BQU0sQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUE7UUFDckIsTUFBTSxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQTtRQUNyQixDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ0wsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUNMLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDTCxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ0wsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUNMLENBQUMsR0FBRyxDQUFDLENBQUE7QUFDTixLQUFBO0lBQ0QsT0FBTztBQUNMLFFBQUEsQ0FBQyxFQUFFLENBQUM7QUFDSixRQUFBLENBQUMsRUFBRSxDQUFDO0FBQ0osUUFBQSxDQUFDLEVBQUUsQ0FBQztLQUNMLENBQUE7QUFDSDs7QUM1Q0E7Ozs7Ozs7QUFPRztBQUNhLFNBQUEsR0FBRyxDQUFFLENBQWdCLEVBQUUsQ0FBZ0IsRUFBQTtJQUNyRCxJQUFJLElBQUksR0FBRyxDQUFDLE9BQU8sQ0FBQyxLQUFLLFFBQVEsSUFBSSxNQUFNLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUMsQ0FBVyxDQUFBO0lBQ3RFLElBQUksSUFBSSxHQUFHLENBQUMsT0FBTyxDQUFDLEtBQUssUUFBUSxJQUFJLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUMsQ0FBQyxDQUFXLENBQUE7SUFFdEUsSUFBSSxJQUFJLEtBQUssRUFBRSxFQUFFO0FBQ2YsUUFBQSxPQUFPLElBQUksQ0FBQTtBQUNaLEtBQUE7U0FBTSxJQUFJLElBQUksS0FBSyxFQUFFLEVBQUU7QUFDdEIsUUFBQSxPQUFPLElBQUksQ0FBQTtBQUNaLEtBQUE7SUFFRCxJQUFJLEtBQUssR0FBRyxFQUFFLENBQUE7SUFDZCxPQUFPLENBQUMsQ0FBQyxJQUFJLEdBQUcsSUFBSSxJQUFJLEVBQUUsTUFBTSxFQUFFLEVBQUU7UUFDbEMsSUFBSSxLQUFLLEVBQUUsQ0FBQTtRQUNYLElBQUksS0FBSyxFQUFFLENBQUE7QUFDWCxRQUFBLEtBQUssRUFBRSxDQUFBO0FBQ1IsS0FBQTtBQUNELElBQUEsT0FBTyxDQUFDLElBQUksR0FBRyxFQUFFLE1BQU0sRUFBRTtRQUFFLElBQUksS0FBSyxFQUFFLENBQUE7SUFDdEMsR0FBRztBQUNELFFBQUEsT0FBTyxDQUFDLElBQUksR0FBRyxFQUFFLE1BQU0sRUFBRTtZQUFFLElBQUksS0FBSyxFQUFFLENBQUE7UUFDdEMsSUFBSSxJQUFJLEdBQUcsSUFBSSxFQUFFO1lBQ2YsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFBO1lBQ2QsSUFBSSxHQUFHLElBQUksQ0FBQTtZQUNYLElBQUksR0FBRyxDQUFDLENBQUE7QUFDVCxTQUFBO1FBQ0QsSUFBSSxJQUFJLElBQUksQ0FBQTtLQUNiLFFBQVEsSUFBSSxLQUFLLEVBQUUsRUFBQzs7SUFHckIsT0FBTyxJQUFJLElBQUksS0FBSyxDQUFBO0FBQ3RCOztBQ3BDQTs7Ozs7O0FBTUc7QUFDYSxTQUFBLEdBQUcsQ0FBRSxDQUFnQixFQUFFLENBQWdCLEVBQUE7SUFDckQsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQUUsUUFBQSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQ3hDLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUFFLFFBQUEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtBQUV4QyxJQUFBLElBQUksQ0FBQyxLQUFLLEVBQUUsSUFBSSxDQUFDLEtBQUssRUFBRTtBQUFFLFFBQUEsT0FBTyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7O0FBRTFDLElBQUEsT0FBTyxHQUFHLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsSUFBSSxDQUFDLENBQVcsQ0FBQTtBQUMzQzs7QUNoQkE7Ozs7Ozs7QUFPRztBQUNhLFNBQUEsR0FBRyxDQUFFLENBQWdCLEVBQUUsQ0FBZ0IsRUFBQTtBQUNyRCxJQUFBLE9BQU8sQ0FBQyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUE7QUFDekI7O0FDVkE7Ozs7Ozs7QUFPRztBQUNhLFNBQUEsR0FBRyxDQUFFLENBQWdCLEVBQUUsQ0FBZ0IsRUFBQTtBQUNyRCxJQUFBLE9BQU8sQ0FBQyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUE7QUFDekI7O0FDVkE7Ozs7Ozs7Ozs7Ozs7QUFhRztBQUNhLFNBQUEsSUFBSSxDQUFFLENBQWdCLEVBQUUsQ0FBZ0IsRUFBQTtJQUN0RCxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFBRSxRQUFBLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDeEMsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQUUsUUFBQSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBRXhDLElBQUksQ0FBQyxJQUFJLEVBQUUsRUFBRTtBQUNYLFFBQUEsTUFBTSxJQUFJLFVBQVUsQ0FBQyxlQUFlLENBQUMsQ0FBQTtBQUN0QyxLQUFBO0FBRUQsSUFBQSxNQUFNLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO0FBQ2pCLElBQUEsT0FBTyxDQUFDLEdBQUcsR0FBRyxFQUFFLElBQUksR0FBRyxHQUFHLENBQUMsR0FBRyxHQUFHLENBQUE7QUFDbkM7O0FDdEJBOzs7Ozs7Ozs7O0FBVUc7QUFDYSxTQUFBLE1BQU0sQ0FBRSxDQUFnQixFQUFFLENBQWdCLEVBQUE7QUFDeEQsSUFBQSxNQUFNLElBQUksR0FBRyxJQUFJLENBQUMsSUFBSSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQTtBQUNoQyxJQUFBLElBQUksSUFBSSxDQUFDLENBQUMsS0FBSyxFQUFFLEVBQUU7QUFDakIsUUFBQSxNQUFNLElBQUksVUFBVSxDQUFDLENBQUcsRUFBQSxDQUFDLENBQUMsUUFBUSxFQUFFLENBQWlDLDhCQUFBLEVBQUEsQ0FBQyxDQUFDLFFBQVEsRUFBRSxFQUFFLENBQUMsQ0FBQTtBQUNyRixLQUFBO0FBQU0sU0FBQTtRQUNMLE9BQU8sSUFBSSxDQUFDLElBQUksQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUE7QUFDdkIsS0FBQTtBQUNIOztBQ2pCQTs7Ozs7Ozs7Ozs7QUFXRztTQUNhLE1BQU0sQ0FBRSxDQUFnQixFQUFFLENBQWdCLEVBQUUsQ0FBZ0IsRUFBQTtJQUMxRSxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFBRSxRQUFBLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDeEMsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQUUsUUFBQSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQ3hDLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUFFLFFBQUEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUV4QyxJQUFJLENBQUMsSUFBSSxFQUFFLEVBQUU7QUFDWCxRQUFBLE1BQU0sSUFBSSxVQUFVLENBQUMsZUFBZSxDQUFDLENBQUE7QUFDdEMsS0FBQTtTQUFNLElBQUksQ0FBQyxLQUFLLEVBQUUsRUFBRTtBQUNuQixRQUFBLE9BQU8sRUFBRSxDQUFBO0FBQ1YsS0FBQTtBQUVELElBQUEsQ0FBQyxHQUFHLElBQUksQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUE7SUFFZCxJQUFJLENBQUMsR0FBRyxFQUFFLEVBQUU7QUFDVixRQUFBLE9BQU8sTUFBTSxDQUFDLE1BQU0sQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFBO0FBQ3ZDLEtBQUE7SUFFRCxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFDVixPQUFPLENBQUMsR0FBRyxDQUFDLEVBQUU7QUFDWixRQUFBLElBQUksQ0FBQyxDQUFDLEdBQUcsRUFBRSxNQUFNLEVBQUUsRUFBRTtBQUNuQixZQUFBLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQTtBQUNkLFNBQUE7QUFDRCxRQUFBLENBQUMsR0FBRyxDQUFDLEdBQUcsRUFBRSxDQUFBO0FBQ1YsUUFBQSxDQUFDLEdBQUcsQ0FBQyxJQUFJLEVBQUUsR0FBRyxDQUFDLENBQUE7QUFDaEIsS0FBQTtBQUNELElBQUEsT0FBTyxDQUFDLENBQUE7QUFDVjs7OzsifQ==