/** * Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 * * @param {number|bigint} a * * @returns {bigint} the absolute value of a */ const abs = function (a) { a = BigInt(a); return (a >= BigInt(0)) ? a : -a; }; /** * Greatest-common divisor of two integers based on the iterative binary algorithm. * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} The greatest common divisor of a and b */ const gcd = function (a, b) { a = abs(a); b = abs(b); let shift = BigInt(0); while (!((a | b) & BigInt(1))) { a >>= BigInt(1); b >>= BigInt(1); shift++; } while (!(a & BigInt(1))) a >>= BigInt(1); do { while (!(b & BigInt(1))) b >>= BigInt(1); if (a > b) { let x = a; a = b; b = x; } b -= a; } while (b); // rescale return a << shift; }; /** * The least common multiple computed as abs(a*b)/gcd(a,b) * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} The least common multiple of a and b */ const lcm = function (a, b) { a = BigInt(a); b = BigInt(b); return abs(a * b) / gcd(a, b); }; /** * Finds the smallest positive element that is congruent to a in modulo n * @param {number|bigint} a An integer * @param {number|bigint} n The modulo * * @returns {bigint} The smallest positive representation of a in modulo n */ const toZn = function (a, n) { n = BigInt(n); a = BigInt(a) % n; return (a < 0) ? a + n : a; }; /** * @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b). * @property {bigint} g * @property {bigint} x * @property {bigint} y */ /** * An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. * Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). * * @param {number|bigint} a * @param {number|bigint} b * * @returns {egcdReturn} */ const eGcd = function (a, b) { a = BigInt(a); b = BigInt(b); let x = BigInt(0); let y = BigInt(1); let u = BigInt(1); let v = BigInt(0); while (a !== BigInt(0)) { let q = b / a; let r = b % a; let m = x - (u * q); let n = y - (v * q); b = a; a = r; x = u; y = v; u = m; v = n; } return { b: b, x: x, y: y }; }; /** * Modular inverse. * * @param {number|bigint} a The number to find an inverse for * @param {number|bigint} n The modulo * * @returns {bigint} the inverse modulo n */ const modInv = function (a, n) { let egcd = eGcd(a, n); if (egcd.b !== BigInt(1)) { return null; // modular inverse does not exist } else { return toZn(egcd.x, n); } }; /** * Modular exponentiation a**b mod n * @param {number|bigint} a base * @param {number|bigint} b exponent * @param {number|bigint} n modulo * * @returns {bigint} a**b mod n */ const modPow = function (a, b, n) { // See Knuth, volume 2, section 4.6.3. n = BigInt(n); a = toZn(a, n); b = BigInt(b); if (b < BigInt(0)) { return modInv(modPow(a, abs(b), n), n); } let result = BigInt(1); let x = a; while (b > 0) { var leastSignificantBit = b % BigInt(2); b = b / BigInt(2); if (leastSignificantBit == BigInt(1)) { result = result * x; result = result % n; } x = x * x; x = x % n; } return result; }; var main = { abs: abs, gcd: gcd, lcm: lcm, modInv: modInv, modPow: modPow }; var main_1 = main.abs; var main_2 = main.gcd; var main_3 = main.lcm; var main_4 = main.modInv; var main_5 = main.modPow; export default main; export { main_1 as abs, main_2 as gcd, main_3 as lcm, main_4 as modInv, main_5 as modPow };