'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); /** * Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 * * @param a * * @returns The absolute value of a */ function abs(a) { return (a >= 0) ? a : -a; } /** * Returns the bitlength of a number * * @param a * @returns The bit length */ function bitLength(a) { if (typeof a === 'number') a = BigInt(a); if (a === 1n) { return 1; } let bits = 1; do { bits++; } while ((a >>= 1n) > 1n); return bits; } /** * An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. * Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). * * @param a * @param b * * @throws {RangeError} * This excepction is thrown if a or b are less than 0 * * @returns A triple (g, x, y), such that ax + by = g = gcd(a, b). */ function eGcd(a, b) { if (typeof a === 'number') a = BigInt(a); if (typeof b === 'number') b = BigInt(b); if (a <= 0n || b <= 0n) throw new RangeError('a and b MUST be > 0'); // a and b MUST be positive let x = 0n; let y = 1n; let u = 1n; let v = 0n; while (a !== 0n) { const q = b / a; const r = b % a; const m = x - (u * q); const n = y - (v * q); b = a; a = r; x = u; y = v; u = m; v = n; } return { g: b, x: x, y: y }; } /** * Greatest-common divisor of two integers based on the iterative binary algorithm. * * @param a * @param b * * @returns The greatest common divisor of a and b */ function gcd(a, b) { let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a); let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b); if (aAbs === 0n) { return bAbs; } else if (bAbs === 0n) { return aAbs; } let shift = 0n; while (((aAbs | bAbs) & 1n) === 0n) { aAbs >>= 1n; bAbs >>= 1n; shift++; } while ((aAbs & 1n) === 0n) aAbs >>= 1n; do { while ((bAbs & 1n) === 0n) bAbs >>= 1n; if (aAbs > bAbs) { const x = aAbs; aAbs = bAbs; bAbs = x; } bAbs -= aAbs; } while (bAbs !== 0n); // rescale return aAbs << shift; } /** * The least common multiple computed as abs(a*b)/gcd(a,b) * @param a * @param b * * @returns The least common multiple of a and b */ function lcm(a, b) { if (typeof a === 'number') a = BigInt(a); if (typeof b === 'number') b = BigInt(b); if (a === 0n && b === 0n) return BigInt(0); return abs(a * b) / gcd(a, b); } /** * Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b * * @param a * @param b * * @returns Maximum of numbers a and b */ function max(a, b) { return (a >= b) ? a : b; } /** * Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b * * @param a * @param b * * @returns Minimum of numbers a and b */ function min(a, b) { return (a >= b) ? b : a; } /** * Finds the smallest positive element that is congruent to a in modulo n * * @remarks * a and b must be the same type, either number or bigint * * @param a - An integer * @param n - The modulo * * @throws {RangeError} * Excpeption thrown when n is not > 0 * * @returns A bigint with the smallest positive representation of a modulo n */ function toZn(a, n) { if (typeof a === 'number') a = BigInt(a); if (typeof n === 'number') n = BigInt(n); if (n <= 0n) { throw new RangeError('n must be > 0'); } const aZn = a % n; return (aZn < 0n) ? aZn + n : aZn; } /** * Modular inverse. * * @param a The number to find an inverse for * @param n The modulo * * @throws {RangeError} * Excpeption thorwn when a does not have inverse modulo n * * @returns The inverse modulo n */ function modInv(a, n) { const egcd = eGcd(toZn(a, n), n); if (egcd.g !== 1n) { throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`); // modular inverse does not exist } else { return toZn(egcd.x, n); } } /** * Modular exponentiation b**e mod n. Currently using the right-to-left binary method * * @param b base * @param e exponent * @param n modulo * * @throws {RangeError} * Excpeption thrown when n is not > 0 * * @returns b**e mod n */ function modPow(b, e, n) { if (typeof b === 'number') b = BigInt(b); if (typeof e === 'number') e = BigInt(e); if (typeof n === 'number') n = BigInt(n); if (n <= 0n) { throw new RangeError('n must be > 0'); } else if (n === 1n) { return 0n; } b = toZn(b, n); if (e < 0n) { return modInv(modPow(b, abs(e), n), n); } let r = 1n; while (e > 0) { if ((e % 2n) === 1n) { r = r * b % n; } e = e / 2n; b = b ** 2n % n; } return r; } exports.abs = abs; exports.bitLength = bitLength; exports.eGcd = eGcd; exports.gcd = gcd; exports.lcm = lcm; exports.max = max; exports.min = min; exports.modInv = modInv; exports.modPow = modPow; exports.toZn = toZn; //# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXgubm9kZS5qcyIsInNvdXJjZXMiOlsiLi4vLi4vc3JjL3RzL2Ficy50cyIsIi4uLy4uL3NyYy90cy9iaXRMZW5ndGgudHMiLCIuLi8uLi9zcmMvdHMvZWdjZC50cyIsIi4uLy4uL3NyYy90cy9nY2QudHMiLCIuLi8uLi9zcmMvdHMvbGNtLnRzIiwiLi4vLi4vc3JjL3RzL21heC50cyIsIi4uLy4uL3NyYy90cy9taW4udHMiLCIuLi8uLi9zcmMvdHMvdG9abi50cyIsIi4uLy4uL3NyYy90cy9tb2RJbnYudHMiLCIuLi8uLi9zcmMvdHMvbW9kUG93LnRzIl0sInNvdXJjZXNDb250ZW50IjpudWxsLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiOzs7O0FBQUE7Ozs7Ozs7U0FPZ0IsR0FBRyxDQUFFLENBQWdCO0lBQ25DLE9BQU8sQ0FBQyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQTtBQUMxQjs7QUNUQTs7Ozs7O1NBTWdCLFNBQVMsQ0FBRSxDQUFnQjtJQUN6QyxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7UUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBRXhDLElBQUksQ0FBQyxLQUFLLEVBQUUsRUFBRTtRQUFFLE9BQU8sQ0FBQyxDQUFBO0tBQUU7SUFDMUIsSUFBSSxJQUFJLEdBQUcsQ0FBQyxDQUFBO0lBQ1osR0FBRztRQUNELElBQUksRUFBRSxDQUFBO0tBQ1AsUUFBUSxDQUFDLENBQUMsS0FBSyxFQUFFLElBQUksRUFBRSxFQUFDO0lBQ3pCLE9BQU8sSUFBSSxDQUFBO0FBQ2I7O0FDVkE7Ozs7Ozs7Ozs7OztTQVlnQixJQUFJLENBQUUsQ0FBZ0IsRUFBRSxDQUFnQjtJQUN0RCxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7UUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQ3hDLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtRQUFFLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFFeEMsSUFBSSxDQUFDLElBQUksRUFBRSxJQUFJLENBQUMsSUFBSSxFQUFFO1FBQUUsTUFBTSxJQUFJLFVBQVUsQ0FBQyxxQkFBcUIsQ0FBQyxDQUFBO0lBRW5FLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQTtJQUNWLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQTtJQUNWLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQTtJQUNWLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQTtJQUVWLE9BQU8sQ0FBQyxLQUFLLEVBQUUsRUFBRTtRQUNmLE1BQU0sQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDZixNQUFNLENBQUMsR0FBVyxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ3ZCLE1BQU0sQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUE7UUFDckIsTUFBTSxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQTtRQUNyQixDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ0wsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUNMLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDTCxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ0wsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUNMLENBQUMsR0FBRyxDQUFDLENBQUE7S0FDTjtJQUNELE9BQU87UUFDTCxDQUFDLEVBQUUsQ0FBQztRQUNKLENBQUMsRUFBRSxDQUFDO1FBQ0osQ0FBQyxFQUFFLENBQUM7S0FDTCxDQUFBO0FBQ0g7O0FDNUNBOzs7Ozs7OztTQVFnQixHQUFHLENBQUUsQ0FBZ0IsRUFBRSxDQUFnQjtJQUNyRCxJQUFJLElBQUksR0FBRyxDQUFDLE9BQU8sQ0FBQyxLQUFLLFFBQVEsSUFBSSxNQUFNLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUMsQ0FBVyxDQUFBO0lBQ3RFLElBQUksSUFBSSxHQUFHLENBQUMsT0FBTyxDQUFDLEtBQUssUUFBUSxJQUFJLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUMsQ0FBQyxDQUFXLENBQUE7SUFFdEUsSUFBSSxJQUFJLEtBQUssRUFBRSxFQUFFO1FBQ2YsT0FBTyxJQUFJLENBQUE7S0FDWjtTQUFNLElBQUksSUFBSSxLQUFLLEVBQUUsRUFBRTtRQUN0QixPQUFPLElBQUksQ0FBQTtLQUNaO0lBRUQsSUFBSSxLQUFLLEdBQUcsRUFBRSxDQUFBO0lBQ2QsT0FBTyxDQUFDLENBQUMsSUFBSSxHQUFHLElBQUksSUFBSSxFQUFFLE1BQU0sRUFBRSxFQUFFO1FBQ2xDLElBQUksS0FBSyxFQUFFLENBQUE7UUFDWCxJQUFJLEtBQUssRUFBRSxDQUFBO1FBQ1gsS0FBSyxFQUFFLENBQUE7S0FDUjtJQUNELE9BQU8sQ0FBQyxJQUFJLEdBQUcsRUFBRSxNQUFNLEVBQUU7UUFBRSxJQUFJLEtBQUssRUFBRSxDQUFBO0lBQ3RDLEdBQUc7UUFDRCxPQUFPLENBQUMsSUFBSSxHQUFHLEVBQUUsTUFBTSxFQUFFO1lBQUUsSUFBSSxLQUFLLEVBQUUsQ0FBQTtRQUN0QyxJQUFJLElBQUksR0FBRyxJQUFJLEVBQUU7WUFDZixNQUFNLENBQUMsR0FBRyxJQUFJLENBQUE7WUFDZCxJQUFJLEdBQUcsSUFBSSxDQUFBO1lBQ1gsSUFBSSxHQUFHLENBQUMsQ0FBQTtTQUNUO1FBQ0QsSUFBSSxJQUFJLElBQUksQ0FBQTtLQUNiLFFBQVEsSUFBSSxLQUFLLEVBQUUsRUFBQzs7SUFHckIsT0FBTyxJQUFJLElBQUksS0FBSyxDQUFBO0FBQ3RCOztBQ3BDQTs7Ozs7OztTQU9nQixHQUFHLENBQUUsQ0FBZ0IsRUFBRSxDQUFnQjtJQUNyRCxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7UUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQ3hDLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtRQUFFLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFFeEMsSUFBSSxDQUFDLEtBQUssRUFBRSxJQUFJLENBQUMsS0FBSyxFQUFFO1FBQUUsT0FBTyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDMUMsT0FBTyxHQUFHLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBVyxHQUFHLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUE7QUFDekM7O0FDZkE7Ozs7Ozs7O1NBUWdCLEdBQUcsQ0FBRSxDQUFnQixFQUFFLENBQWdCO0lBQ3JELE9BQU8sQ0FBQyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUE7QUFDekI7O0FDVkE7Ozs7Ozs7O1NBUWdCLEdBQUcsQ0FBRSxDQUFnQixFQUFFLENBQWdCO0lBQ3JELE9BQU8sQ0FBQyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUE7QUFDekI7O0FDVkE7Ozs7Ozs7Ozs7Ozs7O1NBY2dCLElBQUksQ0FBRSxDQUFnQixFQUFFLENBQWdCO0lBQ3RELElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtRQUFFLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDeEMsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO1FBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUV4QyxJQUFJLENBQUMsSUFBSSxFQUFFLEVBQUU7UUFDWCxNQUFNLElBQUksVUFBVSxDQUFDLGVBQWUsQ0FBQyxDQUFBO0tBQ3RDO0lBRUQsTUFBTSxHQUFHLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUNqQixPQUFPLENBQUMsR0FBRyxHQUFHLEVBQUUsSUFBSSxHQUFHLEdBQUcsQ0FBQyxHQUFHLEdBQUcsQ0FBQTtBQUNuQzs7QUN0QkE7Ozs7Ozs7Ozs7O1NBV2dCLE1BQU0sQ0FBRSxDQUFnQixFQUFFLENBQWdCO0lBQ3hELE1BQU0sSUFBSSxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFBO0lBQ2hDLElBQUksSUFBSSxDQUFDLENBQUMsS0FBSyxFQUFFLEVBQUU7UUFDakIsTUFBTSxJQUFJLFVBQVUsQ0FBQyxHQUFHLENBQUMsQ0FBQyxRQUFRLEVBQUUsaUNBQWlDLENBQUMsQ0FBQyxRQUFRLEVBQUUsRUFBRSxDQUFDLENBQUE7S0FDckY7U0FBTTtRQUNMLE9BQU8sSUFBSSxDQUFDLElBQUksQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUE7S0FDdkI7QUFDSDs7QUNqQkE7Ozs7Ozs7Ozs7OztTQVlnQixNQUFNLENBQUUsQ0FBZ0IsRUFBRSxDQUFnQixFQUFFLENBQWdCO0lBQzFFLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtRQUFFLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDeEMsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO1FBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUN4QyxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7UUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBRXhDLElBQUksQ0FBQyxJQUFJLEVBQUUsRUFBRTtRQUNYLE1BQU0sSUFBSSxVQUFVLENBQUMsZUFBZSxDQUFDLENBQUE7S0FDdEM7U0FBTSxJQUFJLENBQUMsS0FBSyxFQUFFLEVBQUU7UUFDbkIsT0FBTyxFQUFFLENBQUE7S0FDVjtJQUVELENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFBO0lBRWQsSUFBSSxDQUFDLEdBQUcsRUFBRSxFQUFFO1FBQ1YsT0FBTyxNQUFNLENBQUMsTUFBTSxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUE7S0FDdkM7SUFFRCxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFDVixPQUFPLENBQUMsR0FBRyxDQUFDLEVBQUU7UUFDWixJQUFJLENBQUMsQ0FBQyxHQUFHLEVBQUUsTUFBTSxFQUFFLEVBQUU7WUFDbkIsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO1NBQ2Q7UUFDRCxDQUFDLEdBQUcsQ0FBQyxHQUFHLEVBQUUsQ0FBQTtRQUNWLENBQUMsR0FBRyxDQUFDLElBQUksRUFBRSxHQUFHLENBQUMsQ0FBQTtLQUNoQjtJQUNELE9BQU8sQ0FBQyxDQUFBO0FBQ1Y7Ozs7Ozs7Ozs7Ozs7In0=