bigint-mod-arith - v2.0.8 # bigint-mod-arith - v2.0.8 Some common functions for modular arithmetic using native JS implementation of BigInt ## Table of contents ### Interfaces - [Egcd](interfaces/egcd.md) ### Functions - [abs](API.md#abs) - [bitLength](API.md#bitlength) - [eGcd](API.md#egcd) - [gcd](API.md#gcd) - [lcm](API.md#lcm) - [max](API.md#max) - [min](API.md#min) - [modInv](API.md#modinv) - [modPow](API.md#modpow) - [toZn](API.md#tozn) ## Functions ### abs ▸ **abs**(`a`: *number* \| *bigint*): *number* \| *bigint* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 #### Parameters: Name | Type | :------ | :------ | `a` | *number* \| *bigint* | **Returns:** *number* \| *bigint* The absolute value of a Defined in: [ts/abs.ts:8](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/abs.ts#L8) ___ ### bitLength ▸ **bitLength**(`a`: *number* \| *bigint*): *number* Returns the bitlength of a number #### Parameters: Name | Type | :------ | :------ | `a` | *number* \| *bigint* | **Returns:** *number* The bit length Defined in: [ts/bitLength.ts:7](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/bitLength.ts#L7) ___ ### eGcd ▸ **eGcd**(`a`: *number* \| *bigint*, `b`: *number* \| *bigint*): [*Egcd*](interfaces/egcd.md) An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). #### Parameters: Name | Type | :------ | :------ | `a` | *number* \| *bigint* | `b` | *number* \| *bigint* | **Returns:** [*Egcd*](interfaces/egcd.md) A triple (g, x, y), such that ax + by = g = gcd(a, b). Defined in: [ts/egcd.ts:15](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/egcd.ts#L15) ___ ### gcd ▸ **gcd**(`a`: *number* \| *bigint*, `b`: *number* \| *bigint*): *bigint* Greatest-common divisor of two integers based on the iterative binary algorithm. #### Parameters: Name | Type | :------ | :------ | `a` | *number* \| *bigint* | `b` | *number* \| *bigint* | **Returns:** *bigint* The greatest common divisor of a and b Defined in: [ts/gcd.ts:10](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/gcd.ts#L10) ___ ### lcm ▸ **lcm**(`a`: *number* \| *bigint*, `b`: *number* \| *bigint*): *bigint* The least common multiple computed as abs(a*b)/gcd(a,b) #### Parameters: Name | Type | :------ | :------ | `a` | *number* \| *bigint* | `b` | *number* \| *bigint* | **Returns:** *bigint* The least common multiple of a and b Defined in: [ts/lcm.ts:10](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/lcm.ts#L10) ___ ### max ▸ **max**(`a`: *number* \| *bigint*, `b`: *number* \| *bigint*): *number* \| *bigint* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b #### Parameters: Name | Type | :------ | :------ | `a` | *number* \| *bigint* | `b` | *number* \| *bigint* | **Returns:** *number* \| *bigint* Maximum of numbers a and b Defined in: [ts/max.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/max.ts#L9) ___ ### min ▸ **min**(`a`: *number* \| *bigint*, `b`: *number* \| *bigint*): *number* \| *bigint* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b #### Parameters: Name | Type | :------ | :------ | `a` | *number* \| *bigint* | `b` | *number* \| *bigint* | **Returns:** *number* \| *bigint* Minimum of numbers a and b Defined in: [ts/min.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/min.ts#L9) ___ ### modInv ▸ **modInv**(`a`: *number* \| *bigint*, `n`: *number* \| *bigint*): *bigint* \| *number* Modular inverse. #### Parameters: Name | Type | Description | :------ | :------ | :------ | `a` | *number* \| *bigint* | The number to find an inverse for | `n` | *number* \| *bigint* | The modulo | **Returns:** *bigint* \| *number* The inverse modulo n or number NaN if it does not exist Defined in: [ts/modInv.ts:11](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/modInv.ts#L11) ___ ### modPow ▸ **modPow**(`b`: *number* \| *bigint*, `e`: *number* \| *bigint*, `n`: *number* \| *bigint*): *bigint* \| *number* Modular exponentiation b**e mod n. Currently using the right-to-left binary method #### Parameters: Name | Type | Description | :------ | :------ | :------ | `b` | *number* \| *bigint* | base | `e` | *number* \| *bigint* | exponent | `n` | *number* \| *bigint* | modulo | **Returns:** *bigint* \| *number* b**e mod n or number NaN if n <= 0 Defined in: [ts/modPow.ts:13](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/modPow.ts#L13) ___ ### toZn ▸ **toZn**(`a`: *number* \| *bigint*, `n`: *number* \| *bigint*): *bigint* \| *number* Finds the smallest positive element that is congruent to a in modulo n **`remarks`** a and b must be the same type, either number or bigint #### Parameters: Name | Type | Description | :------ | :------ | :------ | `a` | *number* \| *bigint* | An integer | `n` | *number* \| *bigint* | The modulo | **Returns:** *bigint* \| *number* A bigint with the smallest positive representation of a modulo n or number NaN if n < 0 Defined in: [ts/toZn.ts:12](https://github.com/juanelas/bigint-mod-arith/blob/49158bd/src/ts/toZn.ts#L12)