'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); /** * Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 * * @param a * * @returns The absolute value of a */ function abs(a) { return (a >= 0) ? a : -a; } /** * Returns the bitlength of a number * * @param a * @returns The bit length */ function bitLength(a) { if (typeof a === 'number') a = BigInt(a); if (a === 1n) { return 1; } let bits = 1; do { bits++; } while ((a >>= 1n) > 1n); return bits; } /** * An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. * Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). * * @param a * @param b * * @returns A triple (g, x, y), such that ax + by = g = gcd(a, b). */ function eGcd(a, b) { if (typeof a === 'number') a = BigInt(a); if (typeof b === 'number') b = BigInt(b); if (a <= 0n || b <= 0n) throw new RangeError('a and b MUST be > 0'); // a and b MUST be positive let x = 0n; let y = 1n; let u = 1n; let v = 0n; while (a !== 0n) { const q = b / a; const r = b % a; const m = x - (u * q); const n = y - (v * q); b = a; a = r; x = u; y = v; u = m; v = n; } return { g: b, x: x, y: y }; } /** * Greatest-common divisor of two integers based on the iterative binary algorithm. * * @param a * @param b * * @returns The greatest common divisor of a and b */ function gcd(a, b) { let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a); let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b); if (aAbs === 0n) { return bAbs; } else if (bAbs === 0n) { return aAbs; } let shift = 0n; while (((aAbs | bAbs) & 1n) === 0n) { aAbs >>= 1n; bAbs >>= 1n; shift++; } while ((aAbs & 1n) === 0n) aAbs >>= 1n; do { while ((bAbs & 1n) === 0n) bAbs >>= 1n; if (aAbs > bAbs) { const x = aAbs; aAbs = bAbs; bAbs = x; } bAbs -= aAbs; } while (bAbs !== 0n); // rescale return aAbs << shift; } /** * The least common multiple computed as abs(a*b)/gcd(a,b) * @param a * @param b * * @returns The least common multiple of a and b */ function lcm(a, b) { if (typeof a === 'number') a = BigInt(a); if (typeof b === 'number') b = BigInt(b); if (a === 0n && b === 0n) return BigInt(0); return abs(a * b) / gcd(a, b); } /** * Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b * * @param a * @param b * * @returns Maximum of numbers a and b */ function max(a, b) { return (a >= b) ? a : b; } /** * Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b * * @param a * @param b * * @returns Minimum of numbers a and b */ function min(a, b) { return (a >= b) ? b : a; } /** * Finds the smallest positive element that is congruent to a in modulo n * * @remarks * a and b must be the same type, either number or bigint * * @param {number|bigint} a An integer * @param {number|bigint} n The modulo * * @returns A bigint with the smallest positive representation of a modulo n or number NaN if n < 0 */ function toZn(a, n) { if (typeof a === 'number') a = BigInt(a); if (typeof n === 'number') n = BigInt(n); if (n <= 0n) { return NaN; } const aZn = a % n; return (aZn < 0n) ? aZn + n : aZn; } /** * Modular inverse. * * @param a The number to find an inverse for * @param n The modulo * * @returns The inverse modulo n or number NaN if it does not exist */ function modInv(a, n) { try { const egcd = eGcd(toZn(a, n), n); if (egcd.g !== 1n) { return NaN; // modular inverse does not exist } else { return toZn(egcd.x, n); } } catch (error) { return NaN; } } /** * Modular exponentiation b**e mod n. Currently using the right-to-left binary method * * @param b base * @param e exponent * @param n modulo * * @returns b**e mod n or number NaN if n <= 0 */ function modPow(b, e, n) { if (typeof b === 'number') b = BigInt(b); if (typeof e === 'number') e = BigInt(e); if (typeof n === 'number') n = BigInt(n); if (n <= 0n) { return NaN; } else if (n === 1n) { return BigInt(0); } b = toZn(b, n); if (e < 0n) { return modInv(modPow(b, abs(e), n), n); } let r = 1n; while (e > 0) { if ((e % 2n) === 1n) { r = r * b % n; } e = e / 2n; b = b ** 2n % n; } return r; } exports.abs = abs; exports.bitLength = bitLength; exports.eGcd = eGcd; exports.gcd = gcd; exports.lcm = lcm; exports.max = max; exports.min = min; exports.modInv = modInv; exports.modPow = modPow; exports.toZn = toZn; //# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXgubm9kZS5janMiLCJzb3VyY2VzIjpbIi4uLy4uL3NyYy90cy9hYnMudHMiLCIuLi8uLi9zcmMvdHMvYml0TGVuZ3RoLnRzIiwiLi4vLi4vc3JjL3RzL2VnY2QudHMiLCIuLi8uLi9zcmMvdHMvZ2NkLnRzIiwiLi4vLi4vc3JjL3RzL2xjbS50cyIsIi4uLy4uL3NyYy90cy9tYXgudHMiLCIuLi8uLi9zcmMvdHMvbWluLnRzIiwiLi4vLi4vc3JjL3RzL3RvWm4udHMiLCIuLi8uLi9zcmMvdHMvbW9kSW52LnRzIiwiLi4vLi4vc3JjL3RzL21vZFBvdy50cyJdLCJzb3VyY2VzQ29udGVudCI6bnVsbCwibmFtZXMiOltdLCJtYXBwaW5ncyI6Ijs7OztBQUFBOzs7Ozs7O1NBT2dCLEdBQUcsQ0FBRSxDQUFnQjtJQUNuQyxPQUFPLENBQUMsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUE7QUFDMUI7O0FDVEE7Ozs7OztTQU1nQixTQUFTLENBQUUsQ0FBZ0I7SUFDekMsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO1FBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUV4QyxJQUFJLENBQUMsS0FBSyxFQUFFLEVBQUU7UUFBRSxPQUFPLENBQUMsQ0FBQTtLQUFFO0lBQzFCLElBQUksSUFBSSxHQUFHLENBQUMsQ0FBQTtJQUNaLEdBQUc7UUFDRCxJQUFJLEVBQUUsQ0FBQTtLQUNQLFFBQVEsQ0FBQyxDQUFDLEtBQUssRUFBRSxJQUFJLEVBQUUsRUFBQztJQUN6QixPQUFPLElBQUksQ0FBQTtBQUNiOztBQ1ZBOzs7Ozs7Ozs7U0FTZ0IsSUFBSSxDQUFFLENBQWdCLEVBQUUsQ0FBZ0I7SUFDdEQsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO1FBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUN4QyxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7UUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBRXhDLElBQUksQ0FBQyxJQUFJLEVBQUUsSUFBSSxDQUFDLElBQUksRUFBRTtRQUFFLE1BQU0sSUFBSSxVQUFVLENBQUMscUJBQXFCLENBQUMsQ0FBQTtJQUVuRSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFDVixJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFDVixJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFDVixJQUFJLENBQUMsR0FBRyxFQUFFLENBQUE7SUFFVixPQUFPLENBQUMsS0FBSyxFQUFFLEVBQUU7UUFDZixNQUFNLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ2YsTUFBTSxDQUFDLEdBQVcsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUN2QixNQUFNLENBQUMsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFBO1FBQ3JCLE1BQU0sQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUE7UUFDckIsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUNMLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDTCxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ0wsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUNMLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDTCxDQUFDLEdBQUcsQ0FBQyxDQUFBO0tBQ047SUFDRCxPQUFPO1FBQ0wsQ0FBQyxFQUFFLENBQUM7UUFDSixDQUFDLEVBQUUsQ0FBQztRQUNKLENBQUMsRUFBRSxDQUFDO0tBQ0wsQ0FBQTtBQUNIOztBQ3pDQTs7Ozs7Ozs7U0FRZ0IsR0FBRyxDQUFFLENBQWdCLEVBQUUsQ0FBZ0I7SUFDckQsSUFBSSxJQUFJLEdBQUcsQ0FBQyxPQUFPLENBQUMsS0FBSyxRQUFRLElBQUksTUFBTSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEdBQUcsQ0FBQyxDQUFDLENBQVcsQ0FBQTtJQUN0RSxJQUFJLElBQUksR0FBRyxDQUFDLE9BQU8sQ0FBQyxLQUFLLFFBQVEsSUFBSSxNQUFNLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUMsQ0FBVyxDQUFBO0lBRXRFLElBQUksSUFBSSxLQUFLLEVBQUUsRUFBRTtRQUNmLE9BQU8sSUFBSSxDQUFBO0tBQ1o7U0FBTSxJQUFJLElBQUksS0FBSyxFQUFFLEVBQUU7UUFDdEIsT0FBTyxJQUFJLENBQUE7S0FDWjtJQUVELElBQUksS0FBSyxHQUFHLEVBQUUsQ0FBQTtJQUNkLE9BQU8sQ0FBQyxDQUFDLElBQUksR0FBRyxJQUFJLElBQUksRUFBRSxNQUFNLEVBQUUsRUFBRTtRQUNsQyxJQUFJLEtBQUssRUFBRSxDQUFBO1FBQ1gsSUFBSSxLQUFLLEVBQUUsQ0FBQTtRQUNYLEtBQUssRUFBRSxDQUFBO0tBQ1I7SUFDRCxPQUFPLENBQUMsSUFBSSxHQUFHLEVBQUUsTUFBTSxFQUFFO1FBQUUsSUFBSSxLQUFLLEVBQUUsQ0FBQTtJQUN0QyxHQUFHO1FBQ0QsT0FBTyxDQUFDLElBQUksR0FBRyxFQUFFLE1BQU0sRUFBRTtZQUFFLElBQUksS0FBSyxFQUFFLENBQUE7UUFDdEMsSUFBSSxJQUFJLEdBQUcsSUFBSSxFQUFFO1lBQ2YsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFBO1lBQ2QsSUFBSSxHQUFHLElBQUksQ0FBQTtZQUNYLElBQUksR0FBRyxDQUFDLENBQUE7U0FDVDtRQUNELElBQUksSUFBSSxJQUFJLENBQUE7S0FDYixRQUFRLElBQUksS0FBSyxFQUFFLEVBQUM7O0lBR3JCLE9BQU8sSUFBSSxJQUFJLEtBQUssQ0FBQTtBQUN0Qjs7QUNwQ0E7Ozs7Ozs7U0FPZ0IsR0FBRyxDQUFFLENBQWdCLEVBQUUsQ0FBZ0I7SUFDckQsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO1FBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUN4QyxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7UUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBRXhDLElBQUksQ0FBQyxLQUFLLEVBQUUsSUFBSSxDQUFDLEtBQUssRUFBRTtRQUFFLE9BQU8sTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQzFDLE9BQU8sR0FBRyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQVcsR0FBRyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFBO0FBQ3pDOztBQ2ZBOzs7Ozs7OztTQVFnQixHQUFHLENBQUUsQ0FBZ0IsRUFBRSxDQUFnQjtJQUNyRCxPQUFPLENBQUMsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0FBQ3pCOztBQ1ZBOzs7Ozs7OztTQVFnQixHQUFHLENBQUUsQ0FBZ0IsRUFBRSxDQUFnQjtJQUNyRCxPQUFPLENBQUMsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0FBQ3pCOztBQ1ZBOzs7Ozs7Ozs7OztTQVdnQixJQUFJLENBQUUsQ0FBZ0IsRUFBRSxDQUFnQjtJQUN0RCxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7UUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQ3hDLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtRQUFFLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFFeEMsSUFBSSxDQUFDLElBQUksRUFBRSxFQUFFO1FBQUUsT0FBTyxHQUFHLENBQUE7S0FBRTtJQUUzQixNQUFNLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQ2pCLE9BQU8sQ0FBQyxHQUFHLEdBQUcsRUFBRSxJQUFJLEdBQUcsR0FBRyxDQUFDLEdBQUcsR0FBRyxDQUFBO0FBQ25DOztBQ2pCQTs7Ozs7Ozs7U0FRZ0IsTUFBTSxDQUFFLENBQWdCLEVBQUUsQ0FBZ0I7SUFDeEQsSUFBSTtRQUNGLE1BQU0sSUFBSSxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFBO1FBQ2hDLElBQUksSUFBSSxDQUFDLENBQUMsS0FBSyxFQUFFLEVBQUU7WUFDakIsT0FBTyxHQUFHLENBQUE7U0FDWDthQUFNO1lBQ0wsT0FBTyxJQUFJLENBQUMsSUFBSSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQTtTQUN2QjtLQUNGO0lBQUMsT0FBTyxLQUFLLEVBQUU7UUFDZCxPQUFPLEdBQUcsQ0FBQTtLQUNYO0FBQ0g7O0FDbEJBOzs7Ozs7Ozs7U0FTZ0IsTUFBTSxDQUFFLENBQWdCLEVBQUUsQ0FBZ0IsRUFBRSxDQUFnQjtJQUMxRSxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7UUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQ3hDLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtRQUFFLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDeEMsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO1FBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUV4QyxJQUFJLENBQUMsSUFBSSxFQUFFLEVBQUU7UUFBRSxPQUFPLEdBQUcsQ0FBQTtLQUFFO1NBQU0sSUFBSSxDQUFDLEtBQUssRUFBRSxFQUFFO1FBQUUsT0FBTyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7S0FBRTtJQUVuRSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQVcsQ0FBQTtJQUV4QixJQUFJLENBQUMsR0FBRyxFQUFFLEVBQUU7UUFDVixPQUFPLE1BQU0sQ0FBQyxNQUFNLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQTtLQUN2QztJQUVELElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQTtJQUNWLE9BQU8sQ0FBQyxHQUFHLENBQUMsRUFBRTtRQUNaLElBQUksQ0FBQyxDQUFDLEdBQUcsRUFBRSxNQUFNLEVBQUUsRUFBRTtZQUNuQixDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUE7U0FDZDtRQUNELENBQUMsR0FBRyxDQUFDLEdBQUcsRUFBRSxDQUFBO1FBQ1YsQ0FBQyxHQUFHLENBQUMsSUFBSSxFQUFFLEdBQUcsQ0FBQyxDQUFBO0tBQ2hCO0lBQ0QsT0FBTyxDQUFDLENBQUE7QUFDVjs7Ozs7Ozs7Ozs7OzsifQ==