final touchs

This commit is contained in:
Juan Hernández Serrano 2019-04-06 10:08:31 +02:00
parent 944deb4ebd
commit f500432c5b
7 changed files with 2179 additions and 5 deletions

View File

@ -2,11 +2,15 @@
"env": { "env": {
"node": true, "node": true,
"browser": true, "browser": true,
"mocha": true, "mocha": true
"es6": true },
"parserOptions": {
"ecmaVersion": 2017,
"sourceType": "module"
}, },
"extends": "eslint:recommended", "extends": "eslint:recommended",
"rules": { "rules": {
"no-console": 0,
"indent": [ "indent": [
"error", "error",
4 4

71
build/build.rollup.js Normal file
View File

@ -0,0 +1,71 @@
const rollup = require('rollup');
const commonjs = require('rollup-plugin-commonjs');
const minify = require('rollup-plugin-babel-minify');
const fs = require('fs');
const path = require('path');
const pkgJson = require('../package.json');
const buildOptions = [
{ // Browser
input: {
input: path.join(__dirname, '..', 'src', 'main.js'),
plugins: [
commonjs()
],
},
output: {
file: path.join(__dirname, '..', 'dist', `${pkgJson.name}-${pkgJson.version}.browser.mod.js`),
format: 'esm'
}
},
{ // Browser minified
input: {
input: path.join(__dirname, '..', 'src', 'main.js'),
plugins: [
commonjs(),
minify({
'comments': false
})
],
},
output: {
file: path.join(__dirname, '..', 'dist', `${pkgJson.name}-${pkgJson.version}.browser.mod.min.js`),
format: 'esm'
}
},
{ // Node
input: {
input: path.join(__dirname, '..', 'src', 'main.js'),
},
output: {
file: path.join(__dirname, '..', 'dist', `${pkgJson.name}-${pkgJson.version}.node.js`),
format: 'cjs'
}
},
];
for (const options of buildOptions) {
build(options);
}
/* --- HELPLER FUNCTIONS --- */
async function build(options) {
// create a bundle
const bundle = await rollup.rollup(options.input);
// generate code
await bundle.generate(options.output);
// or write the bundle to disk
await bundle.write(options.output);
// copy the latest build as pkg_name-latest
fs.copyFileSync(
options.output.file,
options.output.file.replace(`${pkgJson.name}-${pkgJson.version}.`, `${pkgJson.name}-latest.`)
);
}

View File

@ -0,0 +1,175 @@
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
const abs = function (a) {
a = BigInt(a);
return (a >= BigInt(0)) ? a : -a;
};
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
const gcd = function (a, b) {
a = abs(a);
b = abs(b);
let shift = BigInt(0);
while (!((a | b) & BigInt(1))) {
a >>= BigInt(1);
b >>= BigInt(1);
shift++;
}
while (!(a & BigInt(1))) a >>= BigInt(1);
do {
while (!(b & BigInt(1))) b >>= BigInt(1);
if (a > b) {
let x = a;
a = b;
b = x;
}
b -= a;
} while (b);
// rescale
return a << shift;
};
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
const lcm = function (a, b) {
a = BigInt(a);
b = BigInt(b);
return abs(a * b) / gcd(a, b);
};
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
const toZn = function (a, n) {
n = BigInt(n);
a = BigInt(a) % n;
return (a < 0) ? a + n : a;
};
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn}
*/
const eGcd = function (a, b) {
a = BigInt(a);
b = BigInt(b);
let x = BigInt(0);
let y = BigInt(1);
let u = BigInt(1);
let v = BigInt(0);
while (a !== BigInt(0)) {
let q = b / a;
let r = b % a;
let m = x - (u * q);
let n = y - (v * q);
b = a;
a = r;
x = u;
y = v;
u = m;
v = n;
}
return {
b: b,
x: x,
y: y
};
};
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint} the inverse modulo n
*/
const modInv = function (a, n) {
let egcd = eGcd(a, n);
if (egcd.b !== BigInt(1)) {
return null; // modular inverse does not exist
} else {
return toZn(egcd.x, n);
}
};
/**
* Modular exponentiation a**b mod n
* @param {number|bigint} a base
* @param {number|bigint} b exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} a**b mod n
*/
const modPow = function (a, b, n) {
// See Knuth, volume 2, section 4.6.3.
n = BigInt(n);
a = toZn(a, n);
b = BigInt(b);
if (b < BigInt(0)) {
return modInv(modPow(a, abs(b), n), n);
}
let result = BigInt(1);
let x = a;
while (b > 0) {
var leastSignificantBit = b % BigInt(2);
b = b / BigInt(2);
if (leastSignificantBit == BigInt(1)) {
result = result * x;
result = result % n;
}
x = x * x;
x = x % n;
}
return result;
};
var main = {
abs: abs,
gcd: gcd,
lcm: lcm,
modInv: modInv,
modPow: modPow
};
var main_1 = main.abs;
var main_2 = main.gcd;
var main_3 = main.lcm;
var main_4 = main.modInv;
var main_5 = main.modPow;
export default main;
export { main_1 as abs, main_2 as gcd, main_3 as lcm, main_4 as modInv, main_5 as modPow };

View File

@ -0,0 +1 @@
const abs=function(b){return b=BigInt(b),b>=BigInt(0)?b:-b},gcd=function(c,d){c=abs(c),d=abs(d);let e=BigInt(0);for(;!((c|d)&BigInt(1));)c>>=BigInt(1),d>>=BigInt(1),e++;for(;!(c&BigInt(1));)c>>=BigInt(1);do{for(;!(d&BigInt(1));)d>>=BigInt(1);if(c>d){let a=c;c=d,d=a}d-=c}while(d);return c<<e},lcm=function(c,d){return c=BigInt(c),d=BigInt(d),abs(c*d)/gcd(c,d)},toZn=function(b,c){return c=BigInt(c),b=BigInt(b)%c,0>b?b+c:b},eGcd=function(c,d){c=BigInt(c),d=BigInt(d);let e=BigInt(0),f=BigInt(1),g=BigInt(1),h=BigInt(0);for(;c!==BigInt(0);){let a=d/c,b=d%c,i=e-g*a,j=f-h*a;d=c,c=b,e=g,f=h,g=i,h=j}return{b:d,x:e,y:f}},modInv=function(b,a){let c=eGcd(b,a);return c.b===BigInt(1)?toZn(c.x,a):null},modPow=function(c,d,e){if(e=BigInt(e),c=toZn(c,e),d=BigInt(d),d<BigInt(0))return modInv(modPow(c,abs(d),e),e);let f=BigInt(1),g=c;for(;0<d;){var h=d%BigInt(2);d/=BigInt(2),h==BigInt(1)&&(f*=g,f%=e),g*=g,g%=e}return f};var main={abs:abs,gcd:gcd,lcm:lcm,modInv:modInv,modPow:modPow},main_1=main.abs,main_2=main.gcd,main_3=main.lcm,main_4=main.modInv,main_5=main.modPow;export default main;export{main_1 as abs,main_2 as gcd,main_3 as lcm,main_4 as modInv,main_5 as modPow};

169
dist/bigint-mod-arith-latest.node.js vendored Normal file
View File

@ -0,0 +1,169 @@
'use strict';
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
const abs = function (a) {
a = BigInt(a);
return (a >= BigInt(0)) ? a : -a;
};
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
const gcd = function (a, b) {
a = abs(a);
b = abs(b);
let shift = BigInt(0);
while (!((a | b) & BigInt(1))) {
a >>= BigInt(1);
b >>= BigInt(1);
shift++;
}
while (!(a & BigInt(1))) a >>= BigInt(1);
do {
while (!(b & BigInt(1))) b >>= BigInt(1);
if (a > b) {
let x = a;
a = b;
b = x;
}
b -= a;
} while (b);
// rescale
return a << shift;
};
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
const lcm = function (a, b) {
a = BigInt(a);
b = BigInt(b);
return abs(a * b) / gcd(a, b);
};
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
const toZn = function (a, n) {
n = BigInt(n);
a = BigInt(a) % n;
return (a < 0) ? a + n : a;
};
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn}
*/
const eGcd = function (a, b) {
a = BigInt(a);
b = BigInt(b);
let x = BigInt(0);
let y = BigInt(1);
let u = BigInt(1);
let v = BigInt(0);
while (a !== BigInt(0)) {
let q = b / a;
let r = b % a;
let m = x - (u * q);
let n = y - (v * q);
b = a;
a = r;
x = u;
y = v;
u = m;
v = n;
}
return {
b: b,
x: x,
y: y
};
};
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint} the inverse modulo n
*/
const modInv = function (a, n) {
let egcd = eGcd(a, n);
if (egcd.b !== BigInt(1)) {
return null; // modular inverse does not exist
} else {
return toZn(egcd.x, n);
}
};
/**
* Modular exponentiation a**b mod n
* @param {number|bigint} a base
* @param {number|bigint} b exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} a**b mod n
*/
const modPow = function (a, b, n) {
// See Knuth, volume 2, section 4.6.3.
n = BigInt(n);
a = toZn(a, n);
b = BigInt(b);
if (b < BigInt(0)) {
return modInv(modPow(a, abs(b), n), n);
}
let result = BigInt(1);
let x = a;
while (b > 0) {
var leastSignificantBit = b % BigInt(2);
b = b / BigInt(2);
if (leastSignificantBit == BigInt(1)) {
result = result * x;
result = result % n;
}
x = x * x;
x = x % n;
}
return result;
};
module.exports = {
abs: abs,
gcd: gcd,
lcm: lcm,
modInv: modInv,
modPow: modPow
};

1745
package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@ -18,14 +18,23 @@
"url": "https://github.com/juanelas" "url": "https://github.com/juanelas"
}, },
"repository": "github:juanelas/bigint-mod-arith", "repository": "github:juanelas/bigint-mod-arith",
"main": "./src/main.js", "main": "./dist/bigint-mod-arith-latest.node.js",
"browser": "./dist/bigint-mod-arith-latest.browser.mod.js",
"directories": { "directories": {
"build": "./build",
"dist": "./dist",
"src": "./src" "src": "./src"
}, },
"scripts": { "scripts": {
"docs:build": "jsdoc2md --template=README.hbs --files ./src/main.js > README.md" "docs:build": "jsdoc2md --template=README.hbs --files ./src/main.js > README.md",
"build": "node build/build.rollup.js",
"postinstall": "npm run build",
"prepublishOnly": "npm run build && npm run docs:build"
}, },
"devDependencies": { "devDependencies": {
"jsdoc-to-markdown": "^4.0.1" "jsdoc-to-markdown": "^4.0.1",
"rollup": "^1.9.0",
"rollup-plugin-babel-minify": "^8.0.0",
"rollup-plugin-commonjs": "^9.3.4"
} }
} }