3.2.1
This commit is contained in:
parent
84ebe88a12
commit
80793b35bb
|
@ -0,0 +1,146 @@
|
||||||
|
function abs(a) {
|
||||||
|
return (a >= 0) ? a : -a;
|
||||||
|
}
|
||||||
|
|
||||||
|
function bitLength(a) {
|
||||||
|
if (typeof a === 'number')
|
||||||
|
a = BigInt(a);
|
||||||
|
if (a === 1n) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
let bits = 1;
|
||||||
|
do {
|
||||||
|
bits++;
|
||||||
|
} while ((a >>= 1n) > 1n);
|
||||||
|
return bits;
|
||||||
|
}
|
||||||
|
|
||||||
|
function eGcd(a, b) {
|
||||||
|
if (typeof a === 'number')
|
||||||
|
a = BigInt(a);
|
||||||
|
if (typeof b === 'number')
|
||||||
|
b = BigInt(b);
|
||||||
|
if (a <= 0n || b <= 0n)
|
||||||
|
throw new RangeError('a and b MUST be > 0');
|
||||||
|
let x = 0n;
|
||||||
|
let y = 1n;
|
||||||
|
let u = 1n;
|
||||||
|
let v = 0n;
|
||||||
|
while (a !== 0n) {
|
||||||
|
const q = b / a;
|
||||||
|
const r = b % a;
|
||||||
|
const m = x - (u * q);
|
||||||
|
const n = y - (v * q);
|
||||||
|
b = a;
|
||||||
|
a = r;
|
||||||
|
x = u;
|
||||||
|
y = v;
|
||||||
|
u = m;
|
||||||
|
v = n;
|
||||||
|
}
|
||||||
|
return {
|
||||||
|
g: b,
|
||||||
|
x,
|
||||||
|
y
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
function gcd(a, b) {
|
||||||
|
let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a);
|
||||||
|
let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b);
|
||||||
|
if (aAbs === 0n) {
|
||||||
|
return bAbs;
|
||||||
|
}
|
||||||
|
else if (bAbs === 0n) {
|
||||||
|
return aAbs;
|
||||||
|
}
|
||||||
|
let shift = 0n;
|
||||||
|
while (((aAbs | bAbs) & 1n) === 0n) {
|
||||||
|
aAbs >>= 1n;
|
||||||
|
bAbs >>= 1n;
|
||||||
|
shift++;
|
||||||
|
}
|
||||||
|
while ((aAbs & 1n) === 0n)
|
||||||
|
aAbs >>= 1n;
|
||||||
|
do {
|
||||||
|
while ((bAbs & 1n) === 0n)
|
||||||
|
bAbs >>= 1n;
|
||||||
|
if (aAbs > bAbs) {
|
||||||
|
const x = aAbs;
|
||||||
|
aAbs = bAbs;
|
||||||
|
bAbs = x;
|
||||||
|
}
|
||||||
|
bAbs -= aAbs;
|
||||||
|
} while (bAbs !== 0n);
|
||||||
|
return aAbs << shift;
|
||||||
|
}
|
||||||
|
|
||||||
|
function lcm(a, b) {
|
||||||
|
if (typeof a === 'number')
|
||||||
|
a = BigInt(a);
|
||||||
|
if (typeof b === 'number')
|
||||||
|
b = BigInt(b);
|
||||||
|
if (a === 0n && b === 0n)
|
||||||
|
return BigInt(0);
|
||||||
|
return abs((a / gcd(a, b)) * b);
|
||||||
|
}
|
||||||
|
|
||||||
|
function max(a, b) {
|
||||||
|
return (a >= b) ? a : b;
|
||||||
|
}
|
||||||
|
|
||||||
|
function min(a, b) {
|
||||||
|
return (a >= b) ? b : a;
|
||||||
|
}
|
||||||
|
|
||||||
|
function toZn(a, n) {
|
||||||
|
if (typeof a === 'number')
|
||||||
|
a = BigInt(a);
|
||||||
|
if (typeof n === 'number')
|
||||||
|
n = BigInt(n);
|
||||||
|
if (n <= 0n) {
|
||||||
|
throw new RangeError('n must be > 0');
|
||||||
|
}
|
||||||
|
const aZn = a % n;
|
||||||
|
return (aZn < 0n) ? aZn + n : aZn;
|
||||||
|
}
|
||||||
|
|
||||||
|
function modInv(a, n) {
|
||||||
|
const egcd = eGcd(toZn(a, n), n);
|
||||||
|
if (egcd.g !== 1n) {
|
||||||
|
throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
return toZn(egcd.x, n);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function modPow(b, e, n) {
|
||||||
|
if (typeof b === 'number')
|
||||||
|
b = BigInt(b);
|
||||||
|
if (typeof e === 'number')
|
||||||
|
e = BigInt(e);
|
||||||
|
if (typeof n === 'number')
|
||||||
|
n = BigInt(n);
|
||||||
|
if (n <= 0n) {
|
||||||
|
throw new RangeError('n must be > 0');
|
||||||
|
}
|
||||||
|
else if (n === 1n) {
|
||||||
|
return 0n;
|
||||||
|
}
|
||||||
|
b = toZn(b, n);
|
||||||
|
if (e < 0n) {
|
||||||
|
return modInv(modPow(b, abs(e), n), n);
|
||||||
|
}
|
||||||
|
let r = 1n;
|
||||||
|
while (e > 0) {
|
||||||
|
if ((e % 2n) === 1n) {
|
||||||
|
r = r * b % n;
|
||||||
|
}
|
||||||
|
e = e / 2n;
|
||||||
|
b = b ** 2n % n;
|
||||||
|
}
|
||||||
|
return r;
|
||||||
|
}
|
||||||
|
|
||||||
|
export { abs, bitLength, eGcd, gcd, lcm, max, min, modInv, modPow, toZn };
|
|
@ -0,0 +1 @@
|
||||||
|
function n(n){return n>=0?n:-n}function t(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function r(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let r=0n,e=1n,o=1n,u=0n;for(;0n!==n;){const i=t/n,f=t%n,g=r-o*i,b=e-u*i;t=n,n=f,r=o,e=u,o=g,u=b}return{g:t,x:r,y:e}}function e(t,r){let e="number"==typeof t?BigInt(n(t)):n(t),o="number"==typeof r?BigInt(n(r)):n(r);if(0n===e)return o;if(0n===o)return e;let u=0n;for(;0n===(1n&(e|o));)e>>=1n,o>>=1n,u++;for(;0n===(1n&e);)e>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(e>o){const n=e;e=o,o=n}o-=e}while(0n!==o);return e<<u}function o(t,r){return"number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),0n===t&&0n===r?BigInt(0):n(t/e(t,r)*r)}function u(n,t){return n>=t?n:t}function i(n,t){return n>=t?t:n}function f(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)throw new RangeError("n must be > 0");const r=n%t;return r<0n?r+t:r}function g(n,t){const e=r(f(n,t),t);if(1n!==e.g)throw new RangeError(`${n.toString()} does not have inverse modulo ${t.toString()}`);return f(e.x,t)}function b(t,r,e){if("number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),"number"==typeof e&&(e=BigInt(e)),e<=0n)throw new RangeError("n must be > 0");if(1n===e)return 0n;if(t=f(t,e),r<0n)return g(b(t,n(r),e),e);let o=1n;for(;r>0;)r%2n===1n&&(o=o*t%e),r/=2n,t=t**2n%e;return o}export{n as abs,t as bitLength,r as eGcd,e as gcd,o as lcm,u as max,i as min,g as modInv,b as modPow,f as toZn};
|
|
@ -0,0 +1 @@
|
||||||
|
var bigintModArith=function(n){"use strict";function t(n){return n>=0?n:-n}function r(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let r=0n,e=1n,o=1n,i=0n;for(;0n!==n;){const u=t/n,f=t%n,g=r-o*u,m=e-i*u;t=n,n=f,r=o,e=i,o=g,i=m}return{g:t,x:r,y:e}}function e(n,r){let e="number"==typeof n?BigInt(t(n)):t(n),o="number"==typeof r?BigInt(t(r)):t(r);if(0n===e)return o;if(0n===o)return e;let i=0n;for(;0n===(1n&(e|o));)e>>=1n,o>>=1n,i++;for(;0n===(1n&e);)e>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(e>o){const n=e;e=o,o=n}o-=e}while(0n!==o);return e<<i}function o(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)throw new RangeError("n must be > 0");const r=n%t;return r<0n?r+t:r}function i(n,t){const e=r(o(n,t),t);if(1n!==e.g)throw new RangeError(`${n.toString()} does not have inverse modulo ${t.toString()}`);return o(e.x,t)}return n.abs=t,n.bitLength=function(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t},n.eGcd=r,n.gcd=e,n.lcm=function(n,r){return"number"==typeof n&&(n=BigInt(n)),"number"==typeof r&&(r=BigInt(r)),0n===n&&0n===r?BigInt(0):t(n/e(n,r)*r)},n.max=function(n,t){return n>=t?n:t},n.min=function(n,t){return n>=t?t:n},n.modInv=i,n.modPow=function n(r,e,u){if("number"==typeof r&&(r=BigInt(r)),"number"==typeof e&&(e=BigInt(e)),"number"==typeof u&&(u=BigInt(u)),u<=0n)throw new RangeError("n must be > 0");if(1n===u)return 0n;if(r=o(r,u),e<0n)return i(n(r,t(e),u),u);let f=1n;for(;e>0;)e%2n===1n&&(f=f*r%u),e/=2n,r=r**2n%u;return f},n.toZn=o,n}({});
|
|
@ -0,0 +1 @@
|
||||||
|
!function(n,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((n="undefined"!=typeof globalThis?globalThis:n||self).bigintModArith={})}(this,(function(n){"use strict";function t(n){return n>=0?n:-n}function e(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let e=0n,r=1n,o=1n,i=0n;for(;0n!==n;){const f=t/n,u=t%n,g=e-o*f,b=r-i*f;t=n,n=u,e=o,r=i,o=g,i=b}return{g:t,x:e,y:r}}function r(n,e){let r="number"==typeof n?BigInt(t(n)):t(n),o="number"==typeof e?BigInt(t(e)):t(e);if(0n===r)return o;if(0n===o)return r;let i=0n;for(;0n===(1n&(r|o));)r>>=1n,o>>=1n,i++;for(;0n===(1n&r);)r>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(r>o){const n=r;r=o,o=n}o-=r}while(0n!==o);return r<<i}function o(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)throw new RangeError("n must be > 0");const e=n%t;return e<0n?e+t:e}function i(n,t){const r=e(o(n,t),t);if(1n!==r.g)throw new RangeError(`${n.toString()} does not have inverse modulo ${t.toString()}`);return o(r.x,t)}n.abs=t,n.bitLength=function(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t},n.eGcd=e,n.gcd=r,n.lcm=function(n,e){return"number"==typeof n&&(n=BigInt(n)),"number"==typeof e&&(e=BigInt(e)),0n===n&&0n===e?BigInt(0):t(n/r(n,e)*e)},n.max=function(n,t){return n>=t?n:t},n.min=function(n,t){return n>=t?t:n},n.modInv=i,n.modPow=function n(e,r,f){if("number"==typeof e&&(e=BigInt(e)),"number"==typeof r&&(r=BigInt(r)),"number"==typeof f&&(f=BigInt(f)),f<=0n)throw new RangeError("n must be > 0");if(1n===f)return 0n;if(e=o(e,f),r<0n)return i(n(e,t(r),f),f);let u=1n;for(;r>0;)r%2n===1n&&(u=u*e%f),r/=2n,e=e**2n%f;return u},n.toZn=o}));
|
|
@ -0,0 +1,2 @@
|
||||||
|
function n(n){return n>=0?n:-n}function t(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function r(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let r=0n,e=1n,o=1n,u=0n;for(;0n!==n;){const i=t/n,f=t%n,g=r-o*i,b=e-u*i;t=n,n=f,r=o,e=u,o=g,u=b}return{g:t,x:r,y:e}}function e(t,r){let e="number"==typeof t?BigInt(n(t)):n(t),o="number"==typeof r?BigInt(n(r)):n(r);if(0n===e)return o;if(0n===o)return e;let u=0n;for(;0n===(1n&(e|o));)e>>=1n,o>>=1n,u++;for(;0n===(1n&e);)e>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(e>o){const n=e;e=o,o=n}o-=e}while(0n!==o);return e<<u}function o(t,r){return"number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),0n===t&&0n===r?BigInt(0):n(t/e(t,r)*r)}function u(n,t){return n>=t?n:t}function i(n,t){return n>=t?t:n}function f(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)throw new RangeError("n must be > 0");const r=n%t;return r<0n?r+t:r}function g(n,t){const e=r(f(n,t),t);if(1n!==e.g)throw new RangeError(`${n.toString()} does not have inverse modulo ${t.toString()}`);return f(e.x,t)}function b(t,r,e){if("number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),"number"==typeof e&&(e=BigInt(e)),e<=0n)throw new RangeError("n must be > 0");if(1n===e)return 0n;if(t=f(t,e),r<0n)return g(b(t,n(r),e),e);let o=1n;for(;r>0;)r%2n===1n&&(o=o*t%e),r/=2n,t=t**2n%e;return o}export{n as abs,t as bitLength,r as eGcd,e as gcd,o as lcm,u as max,i as min,g as modInv,b as modPow,f as toZn};
|
||||||
|
//# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXguYnJvd3Nlci5lc20uanMiLCJzb3VyY2VzIjpbIi4uL3NyYy90cy9hYnMudHMiLCIuLi9zcmMvdHMvYml0TGVuZ3RoLnRzIiwiLi4vc3JjL3RzL2VnY2QudHMiLCIuLi9zcmMvdHMvZ2NkLnRzIiwiLi4vc3JjL3RzL2xjbS50cyIsIi4uL3NyYy90cy9tYXgudHMiLCIuLi9zcmMvdHMvbWluLnRzIiwiLi4vc3JjL3RzL3RvWm4udHMiLCIuLi9zcmMvdHMvbW9kSW52LnRzIiwiLi4vc3JjL3RzL21vZFBvdy50cyJdLCJzb3VyY2VzQ29udGVudCI6bnVsbCwibmFtZXMiOlsiYWJzIiwiYSIsImJpdExlbmd0aCIsIkJpZ0ludCIsImJpdHMiLCJlR2NkIiwiYiIsIlJhbmdlRXJyb3IiLCJ4IiwieSIsInUiLCJ2IiwicSIsInIiLCJtIiwibiIsImciLCJnY2QiLCJhQWJzIiwiYkFicyIsInNoaWZ0IiwibGNtIiwibWF4IiwibWluIiwidG9abiIsImFabiIsIm1vZEludiIsImVnY2QiLCJ0b1N0cmluZyIsIm1vZFBvdyIsImUiXSwibWFwcGluZ3MiOiJBQU9NLFNBQVVBLEVBQUtDLEdBQ25CLE9BQVFBLEdBQUssRUFBS0EsR0FBS0EsQ0FDekIsQ0NITSxTQUFVQyxFQUFXRCxHQUd6QixHQUZpQixpQkFBTkEsSUFBZ0JBLEVBQUlFLE9BQU9GLElBRTVCLEtBQU5BLEVBQVksT0FBTyxFQUN2QixJQUFJRyxFQUFPLEVBQ1gsR0FDRUEsV0FDUUgsSUFBTSxJQUFNLElBQ3RCLE9BQU9HLENBQ1QsQ0NDZ0IsU0FBQUMsRUFBTUosRUFBb0JLLEdBSXhDLEdBSGlCLGlCQUFOTCxJQUFnQkEsRUFBSUUsT0FBT0YsSUFDckIsaUJBQU5LLElBQWdCQSxFQUFJSCxPQUFPRyxJQUVsQ0wsR0FBSyxJQUFNSyxHQUFLLEdBQUksTUFBTSxJQUFJQyxXQUFXLHVCQUU3QyxJQUFJQyxFQUFJLEdBQ0pDLEVBQUksR0FDSkMsRUFBSSxHQUNKQyxFQUFJLEdBRVIsS0FBYSxLQUFOVixHQUFVLENBQ2YsTUFBTVcsRUFBSU4sRUFBSUwsRUFDUlksRUFBWVAsRUFBSUwsRUFDaEJhLEVBQUlOLEVBQUtFLEVBQUlFLEVBQ2JHLEVBQUlOLEVBQUtFLEVBQUlDLEVBQ25CTixFQUFJTCxFQUNKQSxFQUFJWSxFQUNKTCxFQUFJRSxFQUNKRCxFQUFJRSxFQUNKRCxFQUFJSSxFQUNKSCxFQUFJSSxDQUNMLENBQ0QsTUFBTyxDQUNMQyxFQUFHVixFQUNIRSxJQUNBQyxJQUVKLENDbkNnQixTQUFBUSxFQUFLaEIsRUFBb0JLLEdBQ3ZDLElBQUlZLEVBQXFCLGlCQUFOakIsRUFBa0JFLE9BQU9ILEVBQUlDLElBQU1ELEVBQUlDLEdBQ3REa0IsRUFBcUIsaUJBQU5iLEVBQWtCSCxPQUFPSCxFQUFJTSxJQUFNTixFQUFJTSxHQUUxRCxHQUFhLEtBQVRZLEVBQ0YsT0FBT0MsRUFDRixHQUFhLEtBQVRBLEVBQ1QsT0FBT0QsRUFHVCxJQUFJRSxFQUFRLEdBQ1osS0FBZ0MsTUFBUixJQUFmRixFQUFPQyxLQUNkRCxJQUFTLEdBQ1RDLElBQVMsR0FDVEMsSUFFRixLQUF1QixNQUFSLEdBQVBGLElBQW1CQSxJQUFTLEdBQ3BDLEVBQUcsQ0FDRCxLQUF1QixNQUFSLEdBQVBDLElBQW1CQSxJQUFTLEdBQ3BDLEdBQUlELEVBQU9DLEVBQU0sQ0FDZixNQUFNWCxFQUFJVSxFQUNWQSxFQUFPQyxFQUNQQSxFQUFPWCxDQUNSLENBQ0RXLEdBQVFELFFBQ1EsS0FBVEMsR0FHVCxPQUFPRCxHQUFRRSxDQUNqQixDQzdCZ0IsU0FBQUMsRUFBS3BCLEVBQW9CSyxHQUl2QyxNQUhpQixpQkFBTkwsSUFBZ0JBLEVBQUlFLE9BQU9GLElBQ3JCLGlCQUFOSyxJQUFnQkEsRUFBSUgsT0FBT0csSUFFNUIsS0FBTkwsR0FBa0IsS0FBTkssRUFBaUJILE9BQU8sR0FFakNILEVBQUtDLEVBQUlnQixFQUFJaEIsRUFBR0ssR0FBTUEsRUFDL0IsQ0NSZ0IsU0FBQWdCLEVBQUtyQixFQUFvQkssR0FDdkMsT0FBUUwsR0FBS0ssRUFBS0wsRUFBSUssQ0FDeEIsQ0NGZ0IsU0FBQWlCLEVBQUt0QixFQUFvQkssR0FDdkMsT0FBUUwsR0FBS0ssRUFBS0EsRUFBSUwsQ0FDeEIsQ0NHZ0IsU0FBQXVCLEVBQU12QixFQUFvQmMsR0FJeEMsR0FIaUIsaUJBQU5kLElBQWdCQSxFQUFJRSxPQUFPRixJQUNyQixpQkFBTmMsSUFBZ0JBLEVBQUlaLE9BQU9ZLElBRWxDQSxHQUFLLEdBQ1AsTUFBTSxJQUFJUixXQUFXLGlCQUd2QixNQUFNa0IsRUFBTXhCLEVBQUljLEVBQ2hCLE9BQVFVLEVBQU0sR0FBTUEsRUFBTVYsRUFBSVUsQ0FDaEMsQ0NYZ0IsU0FBQUMsRUFBUXpCLEVBQW9CYyxHQUMxQyxNQUFNWSxFQUFPdEIsRUFBS21CLEVBQUt2QixFQUFHYyxHQUFJQSxHQUM5QixHQUFlLEtBQVhZLEVBQUtYLEVBQ1AsTUFBTSxJQUFJVCxXQUFXLEdBQUdOLEVBQUUyQiwyQ0FBMkNiLEVBQUVhLGNBRXZFLE9BQU9KLEVBQUtHLEVBQUtuQixFQUFHTyxFQUV4QixVQ0xnQmMsRUFBUXZCLEVBQW9Cd0IsRUFBb0JmLEdBSzlELEdBSmlCLGlCQUFOVCxJQUFnQkEsRUFBSUgsT0FBT0csSUFDckIsaUJBQU53QixJQUFnQkEsRUFBSTNCLE9BQU8yQixJQUNyQixpQkFBTmYsSUFBZ0JBLEVBQUlaLE9BQU9ZLElBRWxDQSxHQUFLLEdBQ1AsTUFBTSxJQUFJUixXQUFXLGlCQUNoQixHQUFVLEtBQU5RLEVBQ1QsT0FBTyxHQUtULEdBRkFULEVBQUlrQixFQUFLbEIsRUFBR1MsR0FFUmUsRUFBSSxHQUNOLE9BQU9KLEVBQU9HLEVBQU92QixFQUFHTixFQUFJOEIsR0FBSWYsR0FBSUEsR0FHdEMsSUFBSUYsRUFBSSxHQUNSLEtBQU9pQixFQUFJLEdBQ0pBLEVBQUksS0FBUSxLQUNmakIsRUFBSUEsRUFBSVAsRUFBSVMsR0FFZGUsR0FBUSxHQUNSeEIsRUFBSUEsR0FBSyxHQUFLUyxFQUVoQixPQUFPRixDQUNUIn0=
|
|
@ -0,0 +1,26 @@
|
||||||
|
declare function abs(a: number | bigint): number | bigint;
|
||||||
|
|
||||||
|
declare function bitLength(a: number | bigint): number;
|
||||||
|
|
||||||
|
interface Egcd {
|
||||||
|
g: bigint;
|
||||||
|
x: bigint;
|
||||||
|
y: bigint;
|
||||||
|
}
|
||||||
|
declare function eGcd(a: number | bigint, b: number | bigint): Egcd;
|
||||||
|
|
||||||
|
declare function gcd(a: number | bigint, b: number | bigint): bigint;
|
||||||
|
|
||||||
|
declare function lcm(a: number | bigint, b: number | bigint): bigint;
|
||||||
|
|
||||||
|
declare function max(a: number | bigint, b: number | bigint): number | bigint;
|
||||||
|
|
||||||
|
declare function min(a: number | bigint, b: number | bigint): number | bigint;
|
||||||
|
|
||||||
|
declare function modInv(a: number | bigint, n: number | bigint): bigint;
|
||||||
|
|
||||||
|
declare function modPow(b: number | bigint, e: number | bigint, n: number | bigint): bigint;
|
||||||
|
|
||||||
|
declare function toZn(a: number | bigint, n: number | bigint): bigint;
|
||||||
|
|
||||||
|
export { Egcd, abs, bitLength, eGcd, gcd, lcm, max, min, modInv, modPow, toZn };
|
|
@ -0,0 +1,2 @@
|
||||||
|
"use strict";function n(n){return n>=0?n:-n}function t(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let r=0n,e=1n,o=1n,i=0n;for(;0n!==n;){const u=t/n,f=t%n,g=r-o*u,p=e-i*u;t=n,n=f,r=o,e=i,o=g,i=p}return{g:t,x:r,y:e}}function r(t,r){let e="number"==typeof t?BigInt(n(t)):n(t),o="number"==typeof r?BigInt(n(r)):n(r);if(0n===e)return o;if(0n===o)return e;let i=0n;for(;0n===(1n&(e|o));)e>>=1n,o>>=1n,i++;for(;0n===(1n&e);)e>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(e>o){const n=e;e=o,o=n}o-=e}while(0n!==o);return e<<i}function e(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)throw new RangeError("n must be > 0");const r=n%t;return r<0n?r+t:r}function o(n,r){const o=t(e(n,r),r);if(1n!==o.g)throw new RangeError(`${n.toString()} does not have inverse modulo ${r.toString()}`);return e(o.x,r)}exports.abs=n,exports.bitLength=function(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t},exports.eGcd=t,exports.gcd=r,exports.lcm=function(t,e){return"number"==typeof t&&(t=BigInt(t)),"number"==typeof e&&(e=BigInt(e)),0n===t&&0n===e?BigInt(0):n(t/r(t,e)*e)},exports.max=function(n,t){return n>=t?n:t},exports.min=function(n,t){return n>=t?t:n},exports.modInv=o,exports.modPow=function t(r,i,u){if("number"==typeof r&&(r=BigInt(r)),"number"==typeof i&&(i=BigInt(i)),"number"==typeof u&&(u=BigInt(u)),u<=0n)throw new RangeError("n must be > 0");if(1n===u)return 0n;if(r=e(r,u),i<0n)return o(t(r,n(i),u),u);let f=1n;for(;i>0;)i%2n===1n&&(f=f*r%u),i/=2n,r=r**2n%u;return f},exports.toZn=e;
|
||||||
|
//# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXgubm9kZS5janMiLCJzb3VyY2VzIjpbIi4uL3NyYy90cy9hYnMudHMiLCIuLi9zcmMvdHMvZWdjZC50cyIsIi4uL3NyYy90cy9nY2QudHMiLCIuLi9zcmMvdHMvdG9abi50cyIsIi4uL3NyYy90cy9tb2RJbnYudHMiLCIuLi9zcmMvdHMvYml0TGVuZ3RoLnRzIiwiLi4vc3JjL3RzL2xjbS50cyIsIi4uL3NyYy90cy9tYXgudHMiLCIuLi9zcmMvdHMvbWluLnRzIiwiLi4vc3JjL3RzL21vZFBvdy50cyJdLCJzb3VyY2VzQ29udGVudCI6bnVsbCwibmFtZXMiOlsiYWJzIiwiYSIsImVHY2QiLCJiIiwiQmlnSW50IiwiUmFuZ2VFcnJvciIsIngiLCJ5IiwidSIsInYiLCJxIiwiciIsIm0iLCJuIiwiZyIsImdjZCIsImFBYnMiLCJiQWJzIiwic2hpZnQiLCJ0b1puIiwiYVpuIiwibW9kSW52IiwiZWdjZCIsInRvU3RyaW5nIiwiYml0cyIsIm1vZFBvdyIsImUiXSwibWFwcGluZ3MiOiJhQU9NLFNBQVVBLEVBQUtDLEdBQ25CLE9BQVFBLEdBQUssRUFBS0EsR0FBS0EsQ0FDekIsQ0NPZ0IsU0FBQUMsRUFBTUQsRUFBb0JFLEdBSXhDLEdBSGlCLGlCQUFORixJQUFnQkEsRUFBSUcsT0FBT0gsSUFDckIsaUJBQU5FLElBQWdCQSxFQUFJQyxPQUFPRCxJQUVsQ0YsR0FBSyxJQUFNRSxHQUFLLEdBQUksTUFBTSxJQUFJRSxXQUFXLHVCQUU3QyxJQUFJQyxFQUFJLEdBQ0pDLEVBQUksR0FDSkMsRUFBSSxHQUNKQyxFQUFJLEdBRVIsS0FBYSxLQUFOUixHQUFVLENBQ2YsTUFBTVMsRUFBSVAsRUFBSUYsRUFDUlUsRUFBWVIsRUFBSUYsRUFDaEJXLEVBQUlOLEVBQUtFLEVBQUlFLEVBQ2JHLEVBQUlOLEVBQUtFLEVBQUlDLEVBQ25CUCxFQUFJRixFQUNKQSxFQUFJVSxFQUNKTCxFQUFJRSxFQUNKRCxFQUFJRSxFQUNKRCxFQUFJSSxFQUNKSCxFQUFJSSxDQUNMLENBQ0QsTUFBTyxDQUNMQyxFQUFHWCxFQUNIRyxJQUNBQyxJQUVKLENDbkNnQixTQUFBUSxFQUFLZCxFQUFvQkUsR0FDdkMsSUFBSWEsRUFBcUIsaUJBQU5mLEVBQWtCRyxPQUFPSixFQUFJQyxJQUFNRCxFQUFJQyxHQUN0RGdCLEVBQXFCLGlCQUFOZCxFQUFrQkMsT0FBT0osRUFBSUcsSUFBTUgsRUFBSUcsR0FFMUQsR0FBYSxLQUFUYSxFQUNGLE9BQU9DLEVBQ0YsR0FBYSxLQUFUQSxFQUNULE9BQU9ELEVBR1QsSUFBSUUsRUFBUSxHQUNaLEtBQWdDLE1BQVIsSUFBZkYsRUFBT0MsS0FDZEQsSUFBUyxHQUNUQyxJQUFTLEdBQ1RDLElBRUYsS0FBdUIsTUFBUixHQUFQRixJQUFtQkEsSUFBUyxHQUNwQyxFQUFHLENBQ0QsS0FBdUIsTUFBUixHQUFQQyxJQUFtQkEsSUFBUyxHQUNwQyxHQUFJRCxFQUFPQyxFQUFNLENBQ2YsTUFBTVgsRUFBSVUsRUFDVkEsRUFBT0MsRUFDUEEsRUFBT1gsQ0FDUixDQUNEVyxHQUFRRCxRQUNRLEtBQVRDLEdBR1QsT0FBT0QsR0FBUUUsQ0FDakIsQ0N6QmdCLFNBQUFDLEVBQU1sQixFQUFvQlksR0FJeEMsR0FIaUIsaUJBQU5aLElBQWdCQSxFQUFJRyxPQUFPSCxJQUNyQixpQkFBTlksSUFBZ0JBLEVBQUlULE9BQU9TLElBRWxDQSxHQUFLLEdBQ1AsTUFBTSxJQUFJUixXQUFXLGlCQUd2QixNQUFNZSxFQUFNbkIsRUFBSVksRUFDaEIsT0FBUU8sRUFBTSxHQUFNQSxFQUFNUCxFQUFJTyxDQUNoQyxDQ1hnQixTQUFBQyxFQUFRcEIsRUFBb0JZLEdBQzFDLE1BQU1TLEVBQU9wQixFQUFLaUIsRUFBS2xCLEVBQUdZLEdBQUlBLEdBQzlCLEdBQWUsS0FBWFMsRUFBS1IsRUFDUCxNQUFNLElBQUlULFdBQVcsR0FBR0osRUFBRXNCLDJDQUEyQ1YsRUFBRVUsY0FFdkUsT0FBT0osRUFBS0csRUFBS2hCLEVBQUdPLEVBRXhCLGlDQ2JNLFNBQXFCWixHQUd6QixHQUZpQixpQkFBTkEsSUFBZ0JBLEVBQUlHLE9BQU9ILElBRTVCLEtBQU5BLEVBQVksT0FBTyxFQUN2QixJQUFJdUIsRUFBTyxFQUNYLEdBQ0VBLFdBQ1F2QixJQUFNLElBQU0sSUFDdEIsT0FBT3VCLENBQ1QsMkNDTmdCLFNBQUt2QixFQUFvQkUsR0FJdkMsTUFIaUIsaUJBQU5GLElBQWdCQSxFQUFJRyxPQUFPSCxJQUNyQixpQkFBTkUsSUFBZ0JBLEVBQUlDLE9BQU9ELElBRTVCLEtBQU5GLEdBQWtCLEtBQU5FLEVBQWlCQyxPQUFPLEdBRWpDSixFQUFLQyxFQUFJYyxFQUFJZCxFQUFHRSxHQUFNQSxFQUMvQixjQ1JnQixTQUFLRixFQUFvQkUsR0FDdkMsT0FBUUYsR0FBS0UsRUFBS0YsRUFBSUUsQ0FDeEIsY0NGZ0IsU0FBS0YsRUFBb0JFLEdBQ3ZDLE9BQVFGLEdBQUtFLEVBQUtBLEVBQUlGLENBQ3hCLDJDQ0lnQndCLEVBQVF0QixFQUFvQnVCLEVBQW9CYixHQUs5RCxHQUppQixpQkFBTlYsSUFBZ0JBLEVBQUlDLE9BQU9ELElBQ3JCLGlCQUFOdUIsSUFBZ0JBLEVBQUl0QixPQUFPc0IsSUFDckIsaUJBQU5iLElBQWdCQSxFQUFJVCxPQUFPUyxJQUVsQ0EsR0FBSyxHQUNQLE1BQU0sSUFBSVIsV0FBVyxpQkFDaEIsR0FBVSxLQUFOUSxFQUNULE9BQU8sR0FLVCxHQUZBVixFQUFJZ0IsRUFBS2hCLEVBQUdVLEdBRVJhLEVBQUksR0FDTixPQUFPTCxFQUFPSSxFQUFPdEIsRUFBR0gsRUFBSTBCLEdBQUliLEdBQUlBLEdBR3RDLElBQUlGLEVBQUksR0FDUixLQUFPZSxFQUFJLEdBQ0pBLEVBQUksS0FBUSxLQUNmZixFQUFJQSxFQUFJUixFQUFJVSxHQUVkYSxHQUFRLEdBQ1J2QixFQUFJQSxHQUFLLEdBQUtVLEVBRWhCLE9BQU9GLENBQ1QifQ==
|
|
@ -0,0 +1,2 @@
|
||||||
|
function n(n){return n>=0?n:-n}function t(n){if("number"==typeof n&&(n=BigInt(n)),1n===n)return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function r(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),n<=0n||t<=0n)throw new RangeError("a and b MUST be > 0");let r=0n,e=1n,o=1n,u=0n;for(;0n!==n;){const i=t/n,f=t%n,g=r-o*i,b=e-u*i;t=n,n=f,r=o,e=u,o=g,u=b}return{g:t,x:r,y:e}}function e(t,r){let e="number"==typeof t?BigInt(n(t)):n(t),o="number"==typeof r?BigInt(n(r)):n(r);if(0n===e)return o;if(0n===o)return e;let u=0n;for(;0n===(1n&(e|o));)e>>=1n,o>>=1n,u++;for(;0n===(1n&e);)e>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(e>o){const n=e;e=o,o=n}o-=e}while(0n!==o);return e<<u}function o(t,r){return"number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),0n===t&&0n===r?BigInt(0):n(t/e(t,r)*r)}function u(n,t){return n>=t?n:t}function i(n,t){return n>=t?t:n}function f(n,t){if("number"==typeof n&&(n=BigInt(n)),"number"==typeof t&&(t=BigInt(t)),t<=0n)throw new RangeError("n must be > 0");const r=n%t;return r<0n?r+t:r}function g(n,t){const e=r(f(n,t),t);if(1n!==e.g)throw new RangeError(`${n.toString()} does not have inverse modulo ${t.toString()}`);return f(e.x,t)}function b(t,r,e){if("number"==typeof t&&(t=BigInt(t)),"number"==typeof r&&(r=BigInt(r)),"number"==typeof e&&(e=BigInt(e)),e<=0n)throw new RangeError("n must be > 0");if(1n===e)return 0n;if(t=f(t,e),r<0n)return g(b(t,n(r),e),e);let o=1n;for(;r>0;)r%2n===1n&&(o=o*t%e),r/=2n,t=t**2n%e;return o}export{n as abs,t as bitLength,r as eGcd,e as gcd,o as lcm,u as max,i as min,g as modInv,b as modPow,f as toZn};
|
||||||
|
//# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXgubm9kZS5lc20uanMiLCJzb3VyY2VzIjpbIi4uL3NyYy90cy9hYnMudHMiLCIuLi9zcmMvdHMvYml0TGVuZ3RoLnRzIiwiLi4vc3JjL3RzL2VnY2QudHMiLCIuLi9zcmMvdHMvZ2NkLnRzIiwiLi4vc3JjL3RzL2xjbS50cyIsIi4uL3NyYy90cy9tYXgudHMiLCIuLi9zcmMvdHMvbWluLnRzIiwiLi4vc3JjL3RzL3RvWm4udHMiLCIuLi9zcmMvdHMvbW9kSW52LnRzIiwiLi4vc3JjL3RzL21vZFBvdy50cyJdLCJzb3VyY2VzQ29udGVudCI6bnVsbCwibmFtZXMiOlsiYWJzIiwiYSIsImJpdExlbmd0aCIsIkJpZ0ludCIsImJpdHMiLCJlR2NkIiwiYiIsIlJhbmdlRXJyb3IiLCJ4IiwieSIsInUiLCJ2IiwicSIsInIiLCJtIiwibiIsImciLCJnY2QiLCJhQWJzIiwiYkFicyIsInNoaWZ0IiwibGNtIiwibWF4IiwibWluIiwidG9abiIsImFabiIsIm1vZEludiIsImVnY2QiLCJ0b1N0cmluZyIsIm1vZFBvdyIsImUiXSwibWFwcGluZ3MiOiJBQU9NLFNBQVVBLEVBQUtDLEdBQ25CLE9BQVFBLEdBQUssRUFBS0EsR0FBS0EsQ0FDekIsQ0NITSxTQUFVQyxFQUFXRCxHQUd6QixHQUZpQixpQkFBTkEsSUFBZ0JBLEVBQUlFLE9BQU9GLElBRTVCLEtBQU5BLEVBQVksT0FBTyxFQUN2QixJQUFJRyxFQUFPLEVBQ1gsR0FDRUEsV0FDUUgsSUFBTSxJQUFNLElBQ3RCLE9BQU9HLENBQ1QsQ0NDZ0IsU0FBQUMsRUFBTUosRUFBb0JLLEdBSXhDLEdBSGlCLGlCQUFOTCxJQUFnQkEsRUFBSUUsT0FBT0YsSUFDckIsaUJBQU5LLElBQWdCQSxFQUFJSCxPQUFPRyxJQUVsQ0wsR0FBSyxJQUFNSyxHQUFLLEdBQUksTUFBTSxJQUFJQyxXQUFXLHVCQUU3QyxJQUFJQyxFQUFJLEdBQ0pDLEVBQUksR0FDSkMsRUFBSSxHQUNKQyxFQUFJLEdBRVIsS0FBYSxLQUFOVixHQUFVLENBQ2YsTUFBTVcsRUFBSU4sRUFBSUwsRUFDUlksRUFBWVAsRUFBSUwsRUFDaEJhLEVBQUlOLEVBQUtFLEVBQUlFLEVBQ2JHLEVBQUlOLEVBQUtFLEVBQUlDLEVBQ25CTixFQUFJTCxFQUNKQSxFQUFJWSxFQUNKTCxFQUFJRSxFQUNKRCxFQUFJRSxFQUNKRCxFQUFJSSxFQUNKSCxFQUFJSSxDQUNMLENBQ0QsTUFBTyxDQUNMQyxFQUFHVixFQUNIRSxJQUNBQyxJQUVKLENDbkNnQixTQUFBUSxFQUFLaEIsRUFBb0JLLEdBQ3ZDLElBQUlZLEVBQXFCLGlCQUFOakIsRUFBa0JFLE9BQU9ILEVBQUlDLElBQU1ELEVBQUlDLEdBQ3REa0IsRUFBcUIsaUJBQU5iLEVBQWtCSCxPQUFPSCxFQUFJTSxJQUFNTixFQUFJTSxHQUUxRCxHQUFhLEtBQVRZLEVBQ0YsT0FBT0MsRUFDRixHQUFhLEtBQVRBLEVBQ1QsT0FBT0QsRUFHVCxJQUFJRSxFQUFRLEdBQ1osS0FBZ0MsTUFBUixJQUFmRixFQUFPQyxLQUNkRCxJQUFTLEdBQ1RDLElBQVMsR0FDVEMsSUFFRixLQUF1QixNQUFSLEdBQVBGLElBQW1CQSxJQUFTLEdBQ3BDLEVBQUcsQ0FDRCxLQUF1QixNQUFSLEdBQVBDLElBQW1CQSxJQUFTLEdBQ3BDLEdBQUlELEVBQU9DLEVBQU0sQ0FDZixNQUFNWCxFQUFJVSxFQUNWQSxFQUFPQyxFQUNQQSxFQUFPWCxDQUNSLENBQ0RXLEdBQVFELFFBQ1EsS0FBVEMsR0FHVCxPQUFPRCxHQUFRRSxDQUNqQixDQzdCZ0IsU0FBQUMsRUFBS3BCLEVBQW9CSyxHQUl2QyxNQUhpQixpQkFBTkwsSUFBZ0JBLEVBQUlFLE9BQU9GLElBQ3JCLGlCQUFOSyxJQUFnQkEsRUFBSUgsT0FBT0csSUFFNUIsS0FBTkwsR0FBa0IsS0FBTkssRUFBaUJILE9BQU8sR0FFakNILEVBQUtDLEVBQUlnQixFQUFJaEIsRUFBR0ssR0FBTUEsRUFDL0IsQ0NSZ0IsU0FBQWdCLEVBQUtyQixFQUFvQkssR0FDdkMsT0FBUUwsR0FBS0ssRUFBS0wsRUFBSUssQ0FDeEIsQ0NGZ0IsU0FBQWlCLEVBQUt0QixFQUFvQkssR0FDdkMsT0FBUUwsR0FBS0ssRUFBS0EsRUFBSUwsQ0FDeEIsQ0NHZ0IsU0FBQXVCLEVBQU12QixFQUFvQmMsR0FJeEMsR0FIaUIsaUJBQU5kLElBQWdCQSxFQUFJRSxPQUFPRixJQUNyQixpQkFBTmMsSUFBZ0JBLEVBQUlaLE9BQU9ZLElBRWxDQSxHQUFLLEdBQ1AsTUFBTSxJQUFJUixXQUFXLGlCQUd2QixNQUFNa0IsRUFBTXhCLEVBQUljLEVBQ2hCLE9BQVFVLEVBQU0sR0FBTUEsRUFBTVYsRUFBSVUsQ0FDaEMsQ0NYZ0IsU0FBQUMsRUFBUXpCLEVBQW9CYyxHQUMxQyxNQUFNWSxFQUFPdEIsRUFBS21CLEVBQUt2QixFQUFHYyxHQUFJQSxHQUM5QixHQUFlLEtBQVhZLEVBQUtYLEVBQ1AsTUFBTSxJQUFJVCxXQUFXLEdBQUdOLEVBQUUyQiwyQ0FBMkNiLEVBQUVhLGNBRXZFLE9BQU9KLEVBQUtHLEVBQUtuQixFQUFHTyxFQUV4QixVQ0xnQmMsRUFBUXZCLEVBQW9Cd0IsRUFBb0JmLEdBSzlELEdBSmlCLGlCQUFOVCxJQUFnQkEsRUFBSUgsT0FBT0csSUFDckIsaUJBQU53QixJQUFnQkEsRUFBSTNCLE9BQU8yQixJQUNyQixpQkFBTmYsSUFBZ0JBLEVBQUlaLE9BQU9ZLElBRWxDQSxHQUFLLEdBQ1AsTUFBTSxJQUFJUixXQUFXLGlCQUNoQixHQUFVLEtBQU5RLEVBQ1QsT0FBTyxHQUtULEdBRkFULEVBQUlrQixFQUFLbEIsRUFBR1MsR0FFUmUsRUFBSSxHQUNOLE9BQU9KLEVBQU9HLEVBQU92QixFQUFHTixFQUFJOEIsR0FBSWYsR0FBSUEsR0FHdEMsSUFBSUYsRUFBSSxHQUNSLEtBQU9pQixFQUFJLEdBQ0pBLEVBQUksS0FBUSxLQUNmakIsRUFBSUEsRUFBSVAsRUFBSVMsR0FFZGUsR0FBUSxHQUNSeEIsRUFBSUEsR0FBSyxHQUFLUyxFQUVoQixPQUFPRixDQUNUIn0=
|
|
@ -0,0 +1 @@
|
||||||
|
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.
|
|
@ -0,0 +1,292 @@
|
||||||
|
# bigint-mod-arith - v3.2.1
|
||||||
|
|
||||||
|
Some common functions for modular arithmetic using native JS implementation of BigInt
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Interfaces
|
||||||
|
|
||||||
|
- [Egcd](interfaces/Egcd.md)
|
||||||
|
|
||||||
|
### Functions
|
||||||
|
|
||||||
|
- [abs](API.md#abs)
|
||||||
|
- [bitLength](API.md#bitlength)
|
||||||
|
- [eGcd](API.md#egcd)
|
||||||
|
- [gcd](API.md#gcd)
|
||||||
|
- [lcm](API.md#lcm)
|
||||||
|
- [max](API.md#max)
|
||||||
|
- [min](API.md#min)
|
||||||
|
- [modInv](API.md#modinv)
|
||||||
|
- [modPow](API.md#modpow)
|
||||||
|
- [toZn](API.md#tozn)
|
||||||
|
|
||||||
|
## Functions
|
||||||
|
|
||||||
|
### abs
|
||||||
|
|
||||||
|
▸ **abs**(`a`): `number` \| `bigint`
|
||||||
|
|
||||||
|
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `a` | `number` \| `bigint` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`number` \| `bigint`
|
||||||
|
|
||||||
|
The absolute value of a
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[abs.ts:8](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/abs.ts#L8)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### bitLength
|
||||||
|
|
||||||
|
▸ **bitLength**(`a`): `number`
|
||||||
|
|
||||||
|
Returns the (minimum) length of a number expressed in bits.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `a` | `number` \| `bigint` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`number`
|
||||||
|
|
||||||
|
The bit length
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[bitLength.ts:7](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/bitLength.ts#L7)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### eGcd
|
||||||
|
|
||||||
|
▸ **eGcd**(`a`, `b`): [`Egcd`](interfaces/Egcd.md)
|
||||||
|
|
||||||
|
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
||||||
|
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||||||
|
|
||||||
|
**`Throws`**
|
||||||
|
|
||||||
|
RangeError if a or b are <= 0
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `a` | `number` \| `bigint` |
|
||||||
|
| `b` | `number` \| `bigint` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Egcd`](interfaces/Egcd.md)
|
||||||
|
|
||||||
|
A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[egcd.ts:17](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/egcd.ts#L17)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### gcd
|
||||||
|
|
||||||
|
▸ **gcd**(`a`, `b`): `bigint`
|
||||||
|
|
||||||
|
Greatest common divisor of two integers based on the iterative binary algorithm.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `a` | `number` \| `bigint` |
|
||||||
|
| `b` | `number` \| `bigint` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`bigint`
|
||||||
|
|
||||||
|
The greatest common divisor of a and b
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[gcd.ts:10](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/gcd.ts#L10)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### lcm
|
||||||
|
|
||||||
|
▸ **lcm**(`a`, `b`): `bigint`
|
||||||
|
|
||||||
|
The least common multiple computed as abs(a*b)/gcd(a,b)
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `a` | `number` \| `bigint` |
|
||||||
|
| `b` | `number` \| `bigint` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`bigint`
|
||||||
|
|
||||||
|
The least common multiple of a and b
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[lcm.ts:10](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/lcm.ts#L10)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### max
|
||||||
|
|
||||||
|
▸ **max**(`a`, `b`): `number` \| `bigint`
|
||||||
|
|
||||||
|
Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<b
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `a` | `number` \| `bigint` |
|
||||||
|
| `b` | `number` \| `bigint` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`number` \| `bigint`
|
||||||
|
|
||||||
|
Maximum of numbers a and b
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[max.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/max.ts#L9)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### min
|
||||||
|
|
||||||
|
▸ **min**(`a`, `b`): `number` \| `bigint`
|
||||||
|
|
||||||
|
Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<b
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `a` | `number` \| `bigint` |
|
||||||
|
| `b` | `number` \| `bigint` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`number` \| `bigint`
|
||||||
|
|
||||||
|
Minimum of numbers a and b
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[min.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/min.ts#L9)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### modInv
|
||||||
|
|
||||||
|
▸ **modInv**(`a`, `n`): `bigint`
|
||||||
|
|
||||||
|
Modular inverse.
|
||||||
|
|
||||||
|
**`Throws`**
|
||||||
|
|
||||||
|
RangeError if a does not have inverse modulo n
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `a` | `number` \| `bigint` | The number to find an inverse for |
|
||||||
|
| `n` | `number` \| `bigint` | The modulo |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`bigint`
|
||||||
|
|
||||||
|
The inverse modulo n
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[modInv.ts:13](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/modInv.ts#L13)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### modPow
|
||||||
|
|
||||||
|
▸ **modPow**(`b`, `e`, `n`): `bigint`
|
||||||
|
|
||||||
|
Modular exponentiation b**e mod n. Currently using the right-to-left binary method
|
||||||
|
|
||||||
|
**`Throws`**
|
||||||
|
|
||||||
|
RangeError if n <= 0
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `b` | `number` \| `bigint` | base |
|
||||||
|
| `e` | `number` \| `bigint` | exponent |
|
||||||
|
| `n` | `number` \| `bigint` | modulo |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`bigint`
|
||||||
|
|
||||||
|
b**e mod n
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[modPow.ts:15](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/modPow.ts#L15)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### toZn
|
||||||
|
|
||||||
|
▸ **toZn**(`a`, `n`): `bigint`
|
||||||
|
|
||||||
|
Finds the smallest positive element that is congruent to a in modulo n
|
||||||
|
|
||||||
|
**`Remarks`**
|
||||||
|
|
||||||
|
a and b must be the same type, either number or bigint
|
||||||
|
|
||||||
|
**`Throws`**
|
||||||
|
|
||||||
|
RangeError if n <= 0
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `a` | `number` \| `bigint` | An integer |
|
||||||
|
| `n` | `number` \| `bigint` | The modulo |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`bigint`
|
||||||
|
|
||||||
|
A bigint with the smallest positive representation of a modulo n
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[toZn.ts:14](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/toZn.ts#L14)
|
|
@ -0,0 +1,39 @@
|
||||||
|
# Interface: Egcd
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [g](Egcd.md#g)
|
||||||
|
- [x](Egcd.md#x)
|
||||||
|
- [y](Egcd.md#y)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### g
|
||||||
|
|
||||||
|
• **g**: `bigint`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[egcd.ts:2](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/egcd.ts#L2)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### x
|
||||||
|
|
||||||
|
• **x**: `bigint`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[egcd.ts:3](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/egcd.ts#L3)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### y
|
||||||
|
|
||||||
|
• **y**: `bigint`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[egcd.ts:4](https://github.com/juanelas/bigint-mod-arith/blob/84ebe88/src/ts/egcd.ts#L4)
|
|
@ -1,12 +1,12 @@
|
||||||
{
|
{
|
||||||
"name": "bigint-mod-arith",
|
"name": "bigint-mod-arith",
|
||||||
"version": "3.2.0",
|
"version": "3.2.1",
|
||||||
"lockfileVersion": 3,
|
"lockfileVersion": 3,
|
||||||
"requires": true,
|
"requires": true,
|
||||||
"packages": {
|
"packages": {
|
||||||
"": {
|
"": {
|
||||||
"name": "bigint-mod-arith",
|
"name": "bigint-mod-arith",
|
||||||
"version": "3.2.0",
|
"version": "3.2.1",
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
"@rollup/plugin-commonjs": "^24.0.1",
|
"@rollup/plugin-commonjs": "^24.0.1",
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
{
|
{
|
||||||
"name": "bigint-mod-arith",
|
"name": "bigint-mod-arith",
|
||||||
"version": "3.2.0",
|
"version": "3.2.1",
|
||||||
"description": "Some common functions for modular arithmetic using native JS implementation of BigInt",
|
"description": "Some common functions for modular arithmetic using native JS implementation of BigInt",
|
||||||
"keywords": [
|
"keywords": [
|
||||||
"modular arithmetics",
|
"modular arithmetics",
|
||||||
|
|
Loading…
Reference in New Issue