217 lines
4.3 KiB
JavaScript
217 lines
4.3 KiB
JavaScript
|
const _ZERO = BigInt(0)
|
||
|
const _ONE = BigInt(1)
|
||
|
const _TWO = BigInt(2)
|
||
|
|
||
|
/**
|
||
|
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
|
||
|
*
|
||
|
* @param {number|bigint} a
|
||
|
*
|
||
|
* @returns {bigint} the absolute value of a
|
||
|
*/
|
||
|
function abs (a) {
|
||
|
a = BigInt(a)
|
||
|
return (a >= _ZERO) ? a : -a
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the bitlength of a number
|
||
|
*
|
||
|
* @param {number|bigint} a
|
||
|
* @returns {number} - the bit length
|
||
|
*/
|
||
|
function bitLength (a) {
|
||
|
a = BigInt(a)
|
||
|
if (a === _ONE) { return 1 }
|
||
|
let bits = 1
|
||
|
do {
|
||
|
bits++
|
||
|
} while ((a >>= _ONE) > _ONE)
|
||
|
return bits
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||
|
* @property {bigint} g
|
||
|
* @property {bigint} x
|
||
|
* @property {bigint} y
|
||
|
*/
|
||
|
/**
|
||
|
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
||
|
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||
|
*
|
||
|
* @param {number|bigint} a
|
||
|
* @param {number|bigint} b
|
||
|
*
|
||
|
* @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||
|
*/
|
||
|
function eGcd (a, b) {
|
||
|
a = BigInt(a)
|
||
|
b = BigInt(b)
|
||
|
if (a <= _ZERO | b <= _ZERO) { return NaN } // a and b MUST be positive
|
||
|
|
||
|
let x = _ZERO
|
||
|
let y = _ONE
|
||
|
let u = _ONE
|
||
|
let v = _ZERO
|
||
|
|
||
|
while (a !== _ZERO) {
|
||
|
const q = b / a
|
||
|
const r = b % a
|
||
|
const m = x - (u * q)
|
||
|
const n = y - (v * q)
|
||
|
b = a
|
||
|
a = r
|
||
|
x = u
|
||
|
y = v
|
||
|
u = m
|
||
|
v = n
|
||
|
}
|
||
|
return {
|
||
|
b: b,
|
||
|
x: x,
|
||
|
y: y
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Greatest-common divisor of two integers based on the iterative binary algorithm.
|
||
|
*
|
||
|
* @param {number|bigint} a
|
||
|
* @param {number|bigint} b
|
||
|
*
|
||
|
* @returns {bigint} The greatest common divisor of a and b
|
||
|
*/
|
||
|
function gcd (a, b) {
|
||
|
a = abs(a)
|
||
|
b = abs(b)
|
||
|
if (a === _ZERO) { return b } else if (b === _ZERO) { return a }
|
||
|
|
||
|
let shift = _ZERO
|
||
|
while (!((a | b) & _ONE)) {
|
||
|
a >>= _ONE
|
||
|
b >>= _ONE
|
||
|
shift++
|
||
|
}
|
||
|
while (!(a & _ONE)) a >>= _ONE
|
||
|
do {
|
||
|
while (!(b & _ONE)) b >>= _ONE
|
||
|
if (a > b) {
|
||
|
const x = a
|
||
|
a = b
|
||
|
b = x
|
||
|
}
|
||
|
b -= a
|
||
|
} while (b)
|
||
|
|
||
|
// rescale
|
||
|
return a << shift
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* The least common multiple computed as abs(a*b)/gcd(a,b)
|
||
|
* @param {number|bigint} a
|
||
|
* @param {number|bigint} b
|
||
|
*
|
||
|
* @returns {bigint} The least common multiple of a and b
|
||
|
*/
|
||
|
function lcm (a, b) {
|
||
|
a = BigInt(a)
|
||
|
b = BigInt(b)
|
||
|
if (a === _ZERO && b === _ZERO) { return _ZERO }
|
||
|
return abs(a * b) / gcd(a, b)
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
|
||
|
*
|
||
|
* @param {number|bigint} a
|
||
|
* @param {number|bigint} b
|
||
|
*
|
||
|
* @returns {bigint} maximum of numbers a and b
|
||
|
*/
|
||
|
function max (a, b) {
|
||
|
a = BigInt(a)
|
||
|
b = BigInt(b)
|
||
|
return (a >= b) ? a : b
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
|
||
|
*
|
||
|
* @param {number|bigint} a
|
||
|
* @param {number|bigint} b
|
||
|
*
|
||
|
* @returns {bigint} minimum of numbers a and b
|
||
|
*/
|
||
|
function min (a, b) {
|
||
|
a = BigInt(a)
|
||
|
b = BigInt(b)
|
||
|
return (a >= b) ? b : a
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Modular inverse.
|
||
|
*
|
||
|
* @param {number|bigint} a The number to find an inverse for
|
||
|
* @param {number|bigint} n The modulo
|
||
|
*
|
||
|
* @returns {bigint} the inverse modulo n or NaN if it does not exist
|
||
|
*/
|
||
|
function modInv (a, n) {
|
||
|
const egcd = eGcd(toZn(a, n), n)
|
||
|
if (egcd.b !== _ONE) {
|
||
|
return NaN // modular inverse does not exist
|
||
|
} else {
|
||
|
return toZn(egcd.x, n)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
|
||
|
*
|
||
|
* @param {number|bigint} b base
|
||
|
* @param {number|bigint} e exponent
|
||
|
* @param {number|bigint} n modulo
|
||
|
*
|
||
|
* @returns {bigint} b**e mod n
|
||
|
*/
|
||
|
function modPow (b, e, n) {
|
||
|
n = BigInt(n)
|
||
|
if (n === _ZERO) { return NaN } else if (n === _ONE) { return _ZERO }
|
||
|
|
||
|
b = toZn(b, n)
|
||
|
|
||
|
e = BigInt(e)
|
||
|
if (e < _ZERO) {
|
||
|
return modInv(modPow(b, abs(e), n), n)
|
||
|
}
|
||
|
|
||
|
let r = _ONE
|
||
|
while (e > 0) {
|
||
|
if ((e % _TWO) === _ONE) {
|
||
|
r = (r * b) % n
|
||
|
}
|
||
|
e = e / _TWO
|
||
|
b = b ** _TWO % n
|
||
|
}
|
||
|
return r
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Finds the smallest positive element that is congruent to a in modulo n
|
||
|
* @param {number|bigint} a An integer
|
||
|
* @param {number|bigint} n The modulo
|
||
|
*
|
||
|
* @returns {bigint} The smallest positive representation of a in modulo n
|
||
|
*/
|
||
|
function toZn (a, n) {
|
||
|
n = BigInt(n)
|
||
|
if (n <= 0) { return NaN }
|
||
|
|
||
|
a = BigInt(a) % n
|
||
|
return (a < 0) ? a + n : a
|
||
|
}
|
||
|
|
||
|
export { abs, bitLength, eGcd, gcd, lcm, max, min, modInv, modPow, toZn }
|