bigint-mod-arith/README.md

223 lines
7.3 KiB
Markdown
Raw Normal View History

2020-04-06 22:49:13 +00:00
[![JavaScript Style Guide](https://img.shields.io/badge/code_style-standard-brightgreen.svg)](https://standardjs.com)
2019-03-17 08:40:35 +00:00
2020-04-06 22:49:13 +00:00
# bigint-mod-arith
2019-04-06 08:50:29 +00:00
2020-04-06 22:49:13 +00:00
Some extra functions to work with modular arithmetic using native JS ([ES-2020](https://tc39.es/ecma262/#sec-bigint-objects)) implementation of BigInt. It can be used by any [Web Browser or webview supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) and with Node.js (>=10.4.0).
2019-04-06 08:50:29 +00:00
2020-04-06 22:49:13 +00:00
> The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html).
2019-04-06 08:50:29 +00:00
## Installation
2020-04-06 22:49:13 +00:00
bigint-mod-arith is distributed for [web browsers and/or webviews supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.
2019-04-06 08:50:29 +00:00
bigint-mod-arith can be imported to your project with `npm`:
2020-04-06 22:49:13 +00:00
2019-04-06 08:50:29 +00:00
```bash
npm install bigint-mod-arith
```
NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.
2019-04-06 08:50:29 +00:00
2020-04-06 22:49:13 +00:00
For web browsers, you can also directly download the [IIFE bundle](https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/lib/index.browser.bundle.js) or the [ES6 bundle module](https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/lib/index.browser.bundle.mod.js) from GitHub.
2019-03-17 08:40:35 +00:00
## Usage example
2019-03-17 08:40:35 +00:00
2020-04-06 22:49:13 +00:00
Import your module as :
- Node.js
```javascript
const bigintCryptoUtils = require('bigint-mod-arith')
... // your code here
```
- JavaScript native project
```javascript
import * as bigintCryptoUtils from 'bigint-mod-arith'
... // your code here
```
- Javascript native browser ES6 mod
```html
<script type="module">
import * as bigintCryptoUtils from 'lib/index.browser.bundle.mod.js' // Use you actual path to the broser mod bundle
... // your code here
</script>
import as bcu from 'bigint-mod-arith'
... // your code here
```
- JavaScript native browser IIFE
```html
<script src="../../lib/index.browser.bundle.js"></script>
<script>
... // your code here
</script>
- TypeScript
```typescript
import * as bigintCryptoUtils from 'bigint-mod-arith'
... // your code here
```
> BigInt is [ES-2020](https://tc39.es/ecma262/#sec-bigint-objects). In order to use it with TypeScript you should set `lib` (and probably also `target` and `module`) to `esnext` in `tsconfig.json`.
2019-04-06 10:41:11 +00:00
2020-04-06 22:49:13 +00:00
```javascript
/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
or the shorter new no-so-linter-friendly syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
*/
2020-04-06 22:49:13 +00:00
const a = BigInt('5')
const b = BigInt('2')
const n = BigInt('19')
2020-04-06 22:49:13 +00:00
console.log(bigintCryptoUtils.modPow(a, b, n)) // prints 6
2020-04-06 22:49:13 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))) // prints 3
2020-04-06 22:49:13 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))) // prints 2
2019-03-17 08:40:35 +00:00
```
2020-04-06 22:49:13 +00:00
## JS Doc
2019-03-17 08:40:35 +00:00
<a name="abs"></a>
2020-04-06 22:49:13 +00:00
### abs(a) ⇒ <code>bigint</code>
2019-03-17 08:40:35 +00:00
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
**Kind**: global function
**Returns**: <code>bigint</code> - the absolute value of a
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
2020-04-06 22:49:13 +00:00
<a name="bitLength"></a>
### bitLength(a) ⇒ <code>number</code>
Returns the bitlength of a number
**Kind**: global function
**Returns**: <code>number</code> - - the bit length
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
<a name="eGcd"></a>
2019-03-17 08:40:35 +00:00
2020-04-06 22:49:13 +00:00
### eGcd(a, b) ⇒ [<code>egcdReturn</code>](#egcdReturn)
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
2019-03-17 08:40:35 +00:00
**Kind**: global function
2020-04-06 22:49:13 +00:00
**Returns**: [<code>egcdReturn</code>](#egcdReturn) - A triple (g, x, y), such that ax + by = g = gcd(a, b).
2019-03-17 08:40:35 +00:00
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="gcd"></a>
2019-03-17 08:40:35 +00:00
2020-04-06 22:49:13 +00:00
### gcd(a, b) ⇒ <code>bigint</code>
Greatest-common divisor of two integers based on the iterative binary algorithm.
2019-03-17 08:40:35 +00:00
**Kind**: global function
**Returns**: <code>bigint</code> - The greatest common divisor of a and b
2019-03-17 08:40:35 +00:00
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="lcm"></a>
2019-03-17 08:40:35 +00:00
2020-04-06 22:49:13 +00:00
### lcm(a, b) ⇒ <code>bigint</code>
The least common multiple computed as abs(a*b)/gcd(a,b)
2019-03-17 08:40:35 +00:00
**Kind**: global function
**Returns**: <code>bigint</code> - The least common multiple of a and b
2019-03-17 08:40:35 +00:00
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
2020-04-06 22:49:13 +00:00
<a name="max"></a>
### max(a, b) ⇒ <code>bigint</code>
Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
**Kind**: global function
**Returns**: <code>bigint</code> - maximum of numbers a and b
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="min"></a>
### min(a, b) ⇒ <code>bigint</code>
Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
**Kind**: global function
**Returns**: <code>bigint</code> - minimum of numbers a and b
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
2019-03-17 08:40:35 +00:00
<a name="modInv"></a>
2020-04-06 22:49:13 +00:00
### modInv(a, n) ⇒ <code>bigint</code>
2019-03-17 08:40:35 +00:00
Modular inverse.
**Kind**: global function
2020-04-06 22:49:13 +00:00
**Returns**: <code>bigint</code> - the inverse modulo n or NaN if it does not exist
2019-03-17 08:40:35 +00:00
| Param | Type | Description |
| --- | --- | --- |
| a | <code>number</code> \| <code>bigint</code> | The number to find an inverse for |
| n | <code>number</code> \| <code>bigint</code> | The modulo |
<a name="modPow"></a>
2020-04-06 22:49:13 +00:00
### modPow(b, e, n) ⇒ <code>bigint</code>
Modular exponentiation b**e mod n. Currently using the right-to-left binary method
2019-03-17 08:40:35 +00:00
**Kind**: global function
2020-04-06 22:49:13 +00:00
**Returns**: <code>bigint</code> - b**e mod n
2019-03-17 08:40:35 +00:00
| Param | Type | Description |
| --- | --- | --- |
2020-04-06 22:49:13 +00:00
| b | <code>number</code> \| <code>bigint</code> | base |
| e | <code>number</code> \| <code>bigint</code> | exponent |
2019-03-17 08:40:35 +00:00
| n | <code>number</code> \| <code>bigint</code> | modulo |
<a name="toZn"></a>
2020-04-06 22:49:13 +00:00
### toZn(a, n) ⇒ <code>bigint</code>
Finds the smallest positive element that is congruent to a in modulo n
**Kind**: global function
**Returns**: <code>bigint</code> - The smallest positive representation of a in modulo n
| Param | Type | Description |
| --- | --- | --- |
| a | <code>number</code> \| <code>bigint</code> | An integer |
| n | <code>number</code> \| <code>bigint</code> | The modulo |
2019-03-17 08:40:35 +00:00
<a name="egcdReturn"></a>
2020-04-06 22:49:13 +00:00
### egcdReturn : <code>Object</code>
2019-03-17 08:40:35 +00:00
A triple (g, x, y), such that ax + by = g = gcd(a, b).
**Kind**: global typedef
**Properties**
| Name | Type |
| --- | --- |
| g | <code>bigint</code> |
| x | <code>bigint</code> |
| y | <code>bigint</code> |