bigint-crypto-utils/dist/bigint-utils-latest.browser.js

630 lines
16 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

var bigintUtils = (function (exports) {
'use strict';
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
const abs = function (a) {
a = BigInt(a);
return (a >= BigInt(0)) ? a : -a;
};
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
const gcd = function (a, b) {
a = abs(a);
b = abs(b);
let shift = BigInt(0);
while (!((a | b) & BigInt(1))) {
a >>= BigInt(1);
b >>= BigInt(1);
shift++;
}
while (!(a & BigInt(1))) a >>= BigInt(1);
do {
while (!(b & BigInt(1))) b >>= BigInt(1);
if (a > b) {
let x = a;
a = b;
b = x;
}
b -= a;
} while (b);
// rescale
return a << shift;
};
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
const lcm = function (a, b) {
a = BigInt(a);
b = BigInt(b);
return abs(a * b) / gcd(a, b);
};
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
const toZn = function (a, n) {
n = BigInt(n);
a = BigInt(a) % n;
return (a < 0) ? a + n : a;
};
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn}
*/
const eGcd = function (a, b) {
a = BigInt(a);
b = BigInt(b);
let x = BigInt(0);
let y = BigInt(1);
let u = BigInt(1);
let v = BigInt(0);
while (a !== BigInt(0)) {
let q = b / a;
let r = b % a;
let m = x - (u * q);
let n = y - (v * q);
b = a;
a = r;
x = u;
y = v;
u = m;
v = n;
}
return {
b: b,
x: x,
y: y
};
};
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint} the inverse modulo n
*/
const modInv = function (a, n) {
let egcd = eGcd(a, n);
if (egcd.b !== BigInt(1)) {
return null; // modular inverse does not exist
} else {
return toZn(egcd.x, n);
}
};
/**
* Modular exponentiation a**b mod n
* @param {number|bigint} a base
* @param {number|bigint} b exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} a**b mod n
*/
const modPow = function (a, b, n) {
// See Knuth, volume 2, section 4.6.3.
n = BigInt(n);
a = toZn(a, n);
b = BigInt(b);
if (b < BigInt(0)) {
return modInv(modPow(a, abs(b), n), n);
}
let result = BigInt(1);
let x = a;
while (b > 0) {
var leastSignificantBit = b % BigInt(2);
b = b / BigInt(2);
if (leastSignificantBit == BigInt(1)) {
result = result * x;
result = result % n;
}
x = x * x;
x = x % n;
}
return result;
};
/**
* Secure random bytes for both node and browsers. Browser implementation uses WebWorkers in order to not lock the main process
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} forceLength If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Promise} A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bytes
*/
const randBytes = async function (byteLength, forceLength = false) {
return new Promise((resolve) => {
let buf;
{ // browser
buf = new Uint8Array(byteLength);
self.crypto.getRandomValues(buf);
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
if (forceLength)
buf[0] = buf[0] | 128;
resolve(buf);
}
});
};
/**
* Returns a cryptographically secure random integer between [min,max]
* @param {bigint} max Returned value will be <= max
* @param {bigint} min Returned value will be >= min
*
* @returns {Promise} A promise that resolves to a cryptographically secure random bigint between [min,max]
*/
const randBetween = async function (max, min = 1) {
let bitLen = bitLength(max);
let byteLength = bitLen >> 3;
let remaining = bitLen - (byteLength * 8);
let extraBits;
if (remaining > 0) {
byteLength++;
extraBits = 2 ** remaining - 1;
}
let rnd;
do {
let buf = await randBytes(byteLength);
// remove extra bits
if (remaining > 0)
buf[0] = buf[0] & extraBits;
rnd = fromBuffer(buf);
} while (rnd > max || rnd < min);
return rnd;
};
/**
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
*
* @param {bigint} w An integer to be tested for primality
* @param {number} iterations The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
*
* @return {Promise} A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
*/
const isProbablyPrime = async function (w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
*/
if (w === BigInt(2))
return true;
else if ((w & BigInt(1)) === BigInt(0) || w === BigInt(1))
return false;
/*
Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above.
*/
const firstPrimes = [
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
1009,
1013,
1019,
1021,
1031,
1033,
1039,
1049,
1051,
1061,
1063,
1069,
1087,
1091,
1093,
1097,
1103,
1109,
1117,
1123,
1129,
1151,
1153,
1163,
1171,
1181,
1187,
1193,
1201,
1213,
1217,
1223,
1229,
1231,
1237,
1249,
1259,
1277,
1279,
1283,
1289,
1291,
1297,
1301,
1303,
1307,
1319,
1321,
1327,
1361,
1367,
1373,
1381,
1399,
1409,
1423,
1427,
1429,
1433,
1439,
1447,
1451,
1453,
1459,
1471,
1481,
1483,
1487,
1489,
1493,
1499,
1511,
1523,
1531,
1543,
1549,
1553,
1559,
1567,
1571,
1579,
1583,
1597,
];
for (let i = 0; i < firstPrimes.length && (BigInt(firstPrimes[i]) <= w); i++) {
const p = BigInt(firstPrimes[i]);
if (w === p)
return true;
else if (w % p === BigInt(0))
return false;
}
/*
1. Let a be the largest integer such that 2**a divides w1.
2. m = (w1) / 2**a.
3. wlen = len (w).
4. For i = 1 to iterations do
4.1 Obtain a string b of wlen bits from an RBG.
Comment: Ensure that 1 < b < w1.
4.2 If ((b ≤ 1) or (b ≥ w1)), then go to step 4.1.
4.3 z = b**m mod w.
4.4 If ((z = 1) or (z = w 1)), then go to step 4.7.
4.5 For j = 1 to a 1 do.
4.5.1 z = z**2 mod w.
4.5.2 If (z = w1), then go to step 4.7.
4.5.3 If (z = 1), then go to step 4.6.
4.6 Return COMPOSITE.
4.7 Continue.
Comment: Increment i for the do-loop in step 4.
5. Return PROBABLY PRIME.
*/
let a = BigInt(0), d = w - BigInt(1);
while (d % BigInt(2) === BigInt(0)) {
d /= BigInt(2);
++a;
}
let m = (w - BigInt(1)) / (BigInt(2) ** a);
loop: do {
let b = await randBetween(w - BigInt(1), 2);
let z = modPow(b, m, w);
if (z === BigInt(1) || z === w - BigInt(1))
continue;
for (let j = 1; j < a; j++) {
z = modPow(z, BigInt(2), w);
if (z === w - BigInt(1))
continue loop;
if (z === BigInt(1))
break;
}
return false;
} while (--iterations);
return true;
};
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} iterations The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {Promise} A promise that resolves to a bigint probable prime of bitLength bits
*/
const prime = async function (bitLength, iterations = 16) {
return new Promise(async (resolve) => {
{
let workerList = [];
for (let i = 0; i < self.navigator.hardwareConcurrency; i++) {
const moduleDir = new URL('./', (document.currentScript && document.currentScript.src || new URL('bigint-utils-0.9.0.browser.js', document.baseURI).href)).pathname;
let newWorker = new Worker(`${moduleDir}/workerPrimalityTest.js`);
newWorker.onmessage = async (event) => {
if (event.data.isPrime) {
// if a prime number has been found, stop all the workers, and return it
for (let j = 0; j < workerList.length; j++) {
workerList[j].terminate();
}
while (workerList.length) {
workerList.pop();
}
resolve(event.data.value);
} else { // if a composite is found, make the worker test another random number
let rnd = BigInt(0);
rnd = fromBuffer(await randBytes(bitLength / 8, true));
newWorker.postMessage({
'rnd': rnd,
'iterations': iterations
});
}
};
workerList.push(newWorker);
}
for (const worker of workerList) {
let rnd = BigInt(0);
rnd = fromBuffer(await randBytes(bitLength / 8, true));
worker.postMessage({
'rnd': rnd,
'iterations': iterations
});
}
}
});
};
/* HELPER FUNCTIONS */
function fromBuffer(buf) {
let ret = BigInt(0);
for (let i of buf.values()) {
let bi = BigInt(i);
ret = (ret << BigInt(8)) + bi;
}
return ret;
}
function bitLength(a) {
let bits = 1;
do {
bits++;
} while ((a >>= BigInt(1)) > BigInt(1));
return bits;
}
exports.abs = abs;
exports.eGcd = eGcd;
exports.gcd = gcd;
exports.isProbablyPrime = isProbablyPrime;
exports.lcm = lcm;
exports.modInv = modInv;
exports.modPow = modPow;
exports.prime = prime;
exports.randBetween = randBetween;
exports.randBytes = randBytes;
exports.toZn = toZn;
return exports;
}({}));