bigint-crypto-utils/types/index.d.ts

179 lines
7.7 KiB
TypeScript

/**
* A triple (g, x, y), such that ax + by = g = gcd(a, b).
*/
export type egcdReturn = {
g: bigint;
x: bigint;
y: bigint;
};
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
export function abs(a: number | bigint): bigint;
/**
* Returns the bitlength of a number
*
* @param {number|bigint} a
* @returns {number} - the bit length
*/
export function bitLength(a: number | bigint): number;
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b).
*/
export function eGcd(a: number | bigint, b: number | bigint): egcdReturn;
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
export function gcd(a: number | bigint, b: number | bigint): bigint;
/**
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
* iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
*
* @param {number | bigint} w An integer to be tested for primality
* @param {number} [iterations = 16] The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
*
* @returns {Promise<boolean>} A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
*/
export function isProbablyPrime(w: number | bigint, iterations?: number): Promise<boolean>;
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
export function lcm(a: number | bigint, b: number | bigint): bigint;
/**
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} maximum of numbers a and b
*/
export function max(a: number | bigint, b: number | bigint): bigint;
/**
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} minimum of numbers a and b
*/
export function min(a: number | bigint, b: number | bigint): bigint;
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint} the inverse modulo n or NaN if it does not exist
*/
export function modInv(a: number | bigint, n: number | bigint): bigint;
/**
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
*
* @param {number|bigint} b base
* @param {number|bigint} e exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} b**e mod n
*/
export function modPow(b: number | bigint, e: number | bigint, n: number | bigint): bigint;
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
* main process, and it can be much faster (if several cores or cpu are available).
* The node version can also use worker_threads if they are available (enabled by default with Node 11 and
* and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {Promise<bigint>} A promise that resolves to a bigint probable prime of bitLength bits.
*/
export function prime(bitLength: number, iterations?: number): Promise<bigint>;
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {bigint} A bigint probable prime of bitLength bits.
*/
export function primeSync(bitLength: number, iterations?: number): bigint;
/**
* Returns a cryptographically secure random integer between [min,max]
* @param {bigint} max Returned value will be <= max
* @param {bigint} [min = BigInt(1)] Returned value will be >= min
*
* @returns {bigint} A cryptographically secure random bigint between [min,max]
*/
export function randBetween(max: bigint, min?: bigint): bigint;
/**
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} bitLength The desired number of random bits
* @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1
*
* @returns {Promise<Buffer | Uint8Array>} A Promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
*/
export function randBits(bitLength: number, forceLength?: boolean): Promise<Uint8Array | Buffer>;
/**
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} bitLength The desired number of random bits
* @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1
*
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
*/
export function randBitsSync(bitLength: number, forceLength?: boolean): Uint8Array | Buffer;
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Promise<Buffer | Uint8Array>} A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
*/
export function randBytes(byteLength: number, forceLength?: boolean): Promise<Uint8Array | Buffer>;
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
*/
export function randBytesSync(byteLength: number, forceLength?: boolean): Uint8Array | Buffer;
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
export function toZn(a: number | bigint, n: number | bigint): bigint;