bigint-crypto-utils/dist/bigint-crypto-utils-latest....

606 lines
13 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

'use strict';
Object.defineProperty(exports, '__esModule', { value: true });
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
function abs(a) {
a = BigInt(a);
return (a >= BigInt(0)) ? a : -a;
}
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn}
*/
function eGcd(a, b) {
a = BigInt(a);
b = BigInt(b);
let x = BigInt(0);
let y = BigInt(1);
let u = BigInt(1);
let v = BigInt(0);
while (a !== BigInt(0)) {
let q = b / a;
let r = b % a;
let m = x - (u * q);
let n = y - (v * q);
b = a;
a = r;
x = u;
y = v;
u = m;
v = n;
}
return {
b: b,
x: x,
y: y
};
}
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
function gcd(a, b) {
a = abs(a);
b = abs(b);
let shift = BigInt(0);
while (!((a | b) & BigInt(1))) {
a >>= BigInt(1);
b >>= BigInt(1);
shift++;
}
while (!(a & BigInt(1))) a >>= BigInt(1);
do {
while (!(b & BigInt(1))) b >>= BigInt(1);
if (a > b) {
let x = a;
a = b;
b = x;
}
b -= a;
} while (b);
// rescale
return a << shift;
}
/**
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
*
* @param {bigint} w An integer to be tested for primality
* @param {number} iterations The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
*
* @return {Promise} A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
*/
async function isProbablyPrime(w, iterations = 16) {
{
return _isProbablyPrime(w, iterations);
}
}
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
function lcm(a, b) {
a = BigInt(a);
b = BigInt(b);
return abs(a * b) / gcd(a, b);
}
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint} the inverse modulo n
*/
function modInv(a, n) {
let egcd = eGcd(a, n);
if (egcd.b !== BigInt(1)) {
return null; // modular inverse does not exist
} else {
return toZn(egcd.x, n);
}
}
/**
* Modular exponentiation a**b mod n
* @param {number|bigint} a base
* @param {number|bigint} b exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} a**b mod n
*/
function modPow(a, b, n) {
// See Knuth, volume 2, section 4.6.3.
n = BigInt(n);
a = toZn(a, n);
b = BigInt(b);
if (b < BigInt(0)) {
return modInv(modPow(a, abs(b), n), n);
}
let result = BigInt(1);
let x = a;
while (b > 0) {
var leastSignificantBit = b % BigInt(2);
b = b / BigInt(2);
if (leastSignificantBit == BigInt(1)) {
result = result * x;
result = result % n;
}
x = x * x;
x = x % n;
}
return result;
}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
* main process, and it can be much faster (if several cores or cpu are available).
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} iterations The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {Promise} A promise that resolves to a bigint probable prime of bitLength bits
*/
async function prime(bitLength, iterations = 16) {
return new Promise(async (resolve) => {
{
let rnd = BigInt(0);
do {
rnd = fromBuffer(await randBytes(bitLength / 8, true));
} while (! await isProbablyPrime(rnd, iterations));
resolve(rnd);
}
});
}
/**
* Returns a cryptographically secure random integer between [min,max]
* @param {bigint} max Returned value will be <= max
* @param {bigint} min Returned value will be >= min
*
* @returns {Promise} A promise that resolves to a cryptographically secure random bigint between [min,max]
*/
async function randBetween(max, min = 1) {
let bitLen = bitLength(max);
let byteLength = bitLen >> 3;
let remaining = bitLen - (byteLength * 8);
let extraBits;
if (remaining > 0) {
byteLength++;
extraBits = 2 ** remaining - 1;
}
let rnd;
do {
let buf = await randBytes(byteLength);
// remove extra bits
if (remaining > 0)
buf[0] = buf[0] & extraBits;
rnd = fromBuffer(buf);
} while (rnd > max || rnd < min);
return rnd;
}
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} forceLength If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Promise} A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bytes
*/
async function randBytes(byteLength, forceLength = false) {
return new Promise((resolve) => {
let buf;
{ // node
const crypto = require('crypto');
buf = Buffer.alloc(byteLength);
crypto.randomFill(buf, (err, buf) => {
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
if (forceLength)
buf[0] = buf[0] | 128;
resolve(buf);
});
}
});
}
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
function toZn(a, n) {
n = BigInt(n);
a = BigInt(a) % n;
return (a < 0) ? a + n : a;
}
/* HELPER FUNCTIONS */
function fromBuffer(buf) {
let ret = BigInt(0);
for (let i of buf.values()) {
let bi = BigInt(i);
ret = (ret << BigInt(8)) + bi;
}
return ret;
}
function bitLength(a) {
let bits = 1;
do {
bits++;
} while ((a >>= BigInt(1)) > BigInt(1));
return bits;
}
async function _isProbablyPrime(w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
*/
if (w === BigInt(2))
return true;
else if ((w & BigInt(1)) === BigInt(0) || w === BigInt(1))
return false;
/*
Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above.
*/
const firstPrimes = [
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
1009,
1013,
1019,
1021,
1031,
1033,
1039,
1049,
1051,
1061,
1063,
1069,
1087,
1091,
1093,
1097,
1103,
1109,
1117,
1123,
1129,
1151,
1153,
1163,
1171,
1181,
1187,
1193,
1201,
1213,
1217,
1223,
1229,
1231,
1237,
1249,
1259,
1277,
1279,
1283,
1289,
1291,
1297,
1301,
1303,
1307,
1319,
1321,
1327,
1361,
1367,
1373,
1381,
1399,
1409,
1423,
1427,
1429,
1433,
1439,
1447,
1451,
1453,
1459,
1471,
1481,
1483,
1487,
1489,
1493,
1499,
1511,
1523,
1531,
1543,
1549,
1553,
1559,
1567,
1571,
1579,
1583,
1597,
];
for (let i = 0; i < firstPrimes.length && (BigInt(firstPrimes[i]) <= w); i++) {
const p = BigInt(firstPrimes[i]);
if (w === p)
return true;
else if (w % p === BigInt(0))
return false;
}
/*
1. Let a be the largest integer such that 2**a divides w1.
2. m = (w1) / 2**a.
3. wlen = len (w).
4. For i = 1 to iterations do
4.1 Obtain a string b of wlen bits from an RBG.
Comment: Ensure that 1 < b < w1.
4.2 If ((b ≤ 1) or (b ≥ w1)), then go to step 4.1.
4.3 z = b**m mod w.
4.4 If ((z = 1) or (z = w 1)), then go to step 4.7.
4.5 For j = 1 to a 1 do.
4.5.1 z = z**2 mod w.
4.5.2 If (z = w1), then go to step 4.7.
4.5.3 If (z = 1), then go to step 4.6.
4.6 Return COMPOSITE.
4.7 Continue.
Comment: Increment i for the do-loop in step 4.
5. Return PROBABLY PRIME.
*/
let a = BigInt(0), d = w - BigInt(1);
while (d % BigInt(2) === BigInt(0)) {
d /= BigInt(2);
++a;
}
let m = (w - BigInt(1)) / (BigInt(2) ** a);
loop: do {
let b = await randBetween(w - BigInt(1), 2);
let z = modPow(b, m, w);
if (z === BigInt(1) || z === w - BigInt(1))
continue;
for (let j = 1; j < a; j++) {
z = modPow(z, BigInt(2), w);
if (z === w - BigInt(1))
continue loop;
if (z === BigInt(1))
break;
}
return false;
} while (--iterations);
return true;
}
exports.abs = abs;
exports.eGcd = eGcd;
exports.gcd = gcd;
exports.isProbablyPrime = isProbablyPrime;
exports.lcm = lcm;
exports.modInv = modInv;
exports.modPow = modPow;
exports.prime = prime;
exports.randBetween = randBetween;
exports.randBytes = randBytes;
exports.toZn = toZn;