bigint-crypto-utils/dist/bigint-crypto-utils-latest....

719 lines
17 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

'use strict';
Object.defineProperty(exports, '__esModule', { value: true });
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
function abs(a) {
a = BigInt(a);
return (a >= BigInt(0)) ? a : -a;
}
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn}
*/
function eGcd(a, b) {
a = BigInt(a);
b = BigInt(b);
let x = BigInt(0);
let y = BigInt(1);
let u = BigInt(1);
let v = BigInt(0);
while (a !== BigInt(0)) {
let q = b / a;
let r = b % a;
let m = x - (u * q);
let n = y - (v * q);
b = a;
a = r;
x = u;
y = v;
u = m;
v = n;
}
return {
b: b,
x: x,
y: y
};
}
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
function gcd(a, b) {
a = abs(a);
b = abs(b);
let shift = BigInt(0);
while (!((a | b) & BigInt(1))) {
a >>= BigInt(1);
b >>= BigInt(1);
shift++;
}
while (!(a & BigInt(1))) a >>= BigInt(1);
do {
while (!(b & BigInt(1))) b >>= BigInt(1);
if (a > b) {
let x = a;
a = b;
b = x;
}
b -= a;
} while (b);
// rescale
return a << shift;
}
/**
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
* iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
*
* @param {bigint} w An integer to be tested for primality
* @param {number} iterations The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
*
* @return {Promise} A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
*/
async function isProbablyPrime(w, iterations = 16) {
{ // Node.js
if (_useWorkers) {
const { Worker } = require('worker_threads');
return new Promise((resolve, reject) => {
let worker = new Worker(__filename);
worker.on('message', (data) => {
worker.terminate();
resolve(data.isPrime);
});
worker.on('error', reject);
worker.postMessage({
'rnd': w,
'iterations': iterations,
'id': 0
});
});
} else {
return _isProbablyPrime(w, iterations);
}
}
}
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
function lcm(a, b) {
a = BigInt(a);
b = BigInt(b);
return abs(a * b) / gcd(a, b);
}
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint} the inverse modulo n
*/
function modInv(a, n) {
let egcd = eGcd(a, n);
if (egcd.b !== BigInt(1)) {
return null; // modular inverse does not exist
} else {
return toZn(egcd.x, n);
}
}
/**
* Modular exponentiation a**b mod n
* @param {number|bigint} a base
* @param {number|bigint} b exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} a**b mod n
*/
function modPow(a, b, n) {
// See Knuth, volume 2, section 4.6.3.
n = BigInt(n);
a = toZn(a, n);
b = BigInt(b);
if (b < BigInt(0)) {
return modInv(modPow(a, abs(b), n), n);
}
let result = BigInt(1);
let x = a;
while (b > 0) {
var leastSignificantBit = b % BigInt(2);
b = b / BigInt(2);
if (leastSignificantBit == BigInt(1)) {
result = result * x;
result = result % n;
}
x = x * x;
x = x % n;
}
return result;
}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
* main process, and it can be much faster (if several cores or cpu are available).
* The node version can also use worker_threads if they are available (enabled by default with Node 11 and
* and can be enabled at runtime executing node --experimental-worker with node >=10.5.0)
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} iterations The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {Promise} A promise that resolves to a bigint probable prime of bitLength bits
*/
async function prime(bitLength, iterations = 16) {
if (!_useWorkers) {
let rnd = BigInt(0);
do {
rnd = fromBuffer(await randBytes(bitLength / 8, true));
} while (! await _isProbablyPrime(rnd, iterations));
return rnd;
}
return new Promise((resolve) => {
let workerList = [];
const _onmessage = (msg, newWorker) => {
if (msg.isPrime) {
// if a prime number has been found, stop all the workers, and return it
for (let j = 0; j < workerList.length; j++) {
workerList[j].terminate();
}
while (workerList.length) {
workerList.pop();
}
resolve(msg.value);
} else { // if a composite is found, make the worker test another random number
randBits(bitLength, true).then((buf) => {
let rnd = fromBuffer(buf);
try {
newWorker.postMessage({
'rnd': rnd,
'iterations': iterations,
'id': msg.id
});
} catch (error) {
// The worker has already terminated. There is nothing to handle here
}
});
}
};
{ // Node.js
const { cpus } = require('os');
const { Worker } = require('worker_threads');
for (let i = 0; i < cpus().length; i++) {
let newWorker = new Worker(__filename);
newWorker.on('message', (msg) => _onmessage(msg, newWorker));
workerList.push(newWorker);
}
}
for (let i = 0; i < workerList.length; i++) {
randBits(bitLength, true).then((buf) => {
let rnd = fromBuffer(buf);
workerList[i].postMessage({
'rnd': rnd,
'iterations': iterations,
'id': i
});
});
}
});
}
/**
* Returns a cryptographically secure random integer between [min,max]
* @param {bigint} max Returned value will be <= max
* @param {bigint} min Returned value will be >= min
*
* @returns {Promise} A promise that resolves to a cryptographically secure random bigint between [min,max]
*/
async function randBetween(max, min = BigInt(1)) {
if (max <= min) throw new Error('max must be > min');
const interval = max - min;
let bitLen = bitLength(interval);
let rnd;
do {
let buf = await randBits(bitLen);
rnd = fromBuffer(buf);
} while (rnd > interval);
return rnd + min;
}
/**
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} bitLength The desired number of random bits
* @param {boolean} forceLength If we want to force the output to have a specific bit length. It basically forces the msb to be 1
*
* @returns {Promise} A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bits
*/
async function randBits(bitLength, forceLength = false) {
const byteLength = Math.ceil(bitLength / 8);
let rndBytes = await randBytes(byteLength, false);
// Fill with 0's the extra birs
rndBytes[0] = rndBytes[0] & (2 ** (bitLength % 8) - 1);
if (forceLength) {
let mask = (bitLength % 8) ? 2 ** ((bitLength % 8) - 1) : 128;
rndBytes[0] = rndBytes[0] | mask;
}
return rndBytes;
}
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} forceLength If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Promise} A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bytes
*/
async function randBytes(byteLength, forceLength = false) {
return new Promise((resolve) => {
let buf;
{ // node
const crypto = require('crypto');
buf = Buffer.alloc(byteLength);
crypto.randomFill(buf, (err, buf) => {
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
if (forceLength)
buf[0] = buf[0] | 128;
resolve(buf);
});
}
});
}
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
function toZn(a, n) {
n = BigInt(n);
a = BigInt(a) % n;
return (a < 0) ? a + n : a;
}
/* HELPER FUNCTIONS */
function fromBuffer(buf) {
let ret = BigInt(0);
for (let i of buf.values()) {
let bi = BigInt(i);
ret = (ret << BigInt(8)) + bi;
}
return ret;
}
function bitLength(a) {
let bits = 1;
do {
bits++;
} while ((a >>= BigInt(1)) > BigInt(1));
return bits;
}
async function _isProbablyPrime(w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
*/
if (w === BigInt(2))
return true;
else if ((w & BigInt(1)) === BigInt(0) || w === BigInt(1))
return false;
/*
Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above.
*/
const firstPrimes = [
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
1009,
1013,
1019,
1021,
1031,
1033,
1039,
1049,
1051,
1061,
1063,
1069,
1087,
1091,
1093,
1097,
1103,
1109,
1117,
1123,
1129,
1151,
1153,
1163,
1171,
1181,
1187,
1193,
1201,
1213,
1217,
1223,
1229,
1231,
1237,
1249,
1259,
1277,
1279,
1283,
1289,
1291,
1297,
1301,
1303,
1307,
1319,
1321,
1327,
1361,
1367,
1373,
1381,
1399,
1409,
1423,
1427,
1429,
1433,
1439,
1447,
1451,
1453,
1459,
1471,
1481,
1483,
1487,
1489,
1493,
1499,
1511,
1523,
1531,
1543,
1549,
1553,
1559,
1567,
1571,
1579,
1583,
1597,
];
for (let i = 0; i < firstPrimes.length && (BigInt(firstPrimes[i]) <= w); i++) {
const p = BigInt(firstPrimes[i]);
if (w === p)
return true;
else if (w % p === BigInt(0))
return false;
}
/*
1. Let a be the largest integer such that 2**a divides w1.
2. m = (w1) / 2**a.
3. wlen = len (w).
4. For i = 1 to iterations do
4.1 Obtain a string b of wlen bits from an RBG.
Comment: Ensure that 1 < b < w1.
4.2 If ((b ≤ 1) or (b ≥ w1)), then go to step 4.1.
4.3 z = b**m mod w.
4.4 If ((z = 1) or (z = w 1)), then go to step 4.7.
4.5 For j = 1 to a 1 do.
4.5.1 z = z**2 mod w.
4.5.2 If (z = w1), then go to step 4.7.
4.5.3 If (z = 1), then go to step 4.6.
4.6 Return COMPOSITE.
4.7 Continue.
Comment: Increment i for the do-loop in step 4.
5. Return PROBABLY PRIME.
*/
let a = BigInt(0), d = w - BigInt(1);
while (d % BigInt(2) === BigInt(0)) {
d /= BigInt(2);
++a;
}
let m = (w - BigInt(1)) / (BigInt(2) ** a);
loop: do {
let b = await randBetween(w - BigInt(1), BigInt(2));
let z = modPow(b, m, w);
if (z === BigInt(1) || z === w - BigInt(1))
continue;
for (let j = 1; j < a; j++) {
z = modPow(z, BigInt(2), w);
if (z === w - BigInt(1))
continue loop;
if (z === BigInt(1))
break;
}
return false;
} while (--iterations);
return true;
}
let _useWorkers = true;
{
_useWorkers = (function _workers() {
try {
require.resolve('worker_threads');
return true;
} catch (e) {
console.log(`[bigint-crypto-utils] WARNING:
This node version doesn't support worker_threads. You should enable them in order to greately speedup the generation of big prime numbers.
· With Node 11 it is enabled by default (consider upgrading).
· With Node 10, starting with 10.5.0, you can enable worker_threads at runtime executing node --experimental-worker `);
return false;
}
})();
}
if (_useWorkers) { // node.js
const { parentPort, isMainThread } = require('worker_threads');
if (!isMainThread) { // worker
parentPort.on('message', async function (data) { // Let's start once we are called
// data = {rnd: <bigint>, iterations: <number>}
const isPrime = await _isProbablyPrime(data.rnd, data.iterations);
parentPort.postMessage({
'isPrime': isPrime,
'value': data.rnd,
'id': data.id
});
});
}
}
exports.abs = abs;
exports.eGcd = eGcd;
exports.gcd = gcd;
exports.isProbablyPrime = isProbablyPrime;
exports.lcm = lcm;
exports.modInv = modInv;
exports.modPow = modPow;
exports.prime = prime;
exports.randBetween = randBetween;
exports.randBits = randBits;
exports.randBytes = randBytes;
exports.toZn = toZn;