d14edc96f2 | ||
---|---|---|
build | ||
dist | ||
src | ||
test | ||
.eslintrc.json | ||
.gitignore | ||
LICENSE | ||
README.hbs | ||
README.md | ||
package-lock.json | ||
package.json |
README.md
bigint-crypto-utils
Utils for working with cryptography using native JS (stage 3) implementation of BigInt. It includes some extra functions to work with modular arithmetics along with secure random numbers and a fast strong probable prime generation/testing (parallelised multi-threaded Miller-Rabin primality test). It can be used by any Web Browsers or webviews supporting BigInt and with Node.js (>=10.4.0). In the former case, for multi-threaded primality tests, you should use Node.js 11 or enable at runtime with node --experimental-worker
with Node.js >=10.5.0.
The operations supported on BigInts are not constant time. BigInt can be therefore unsuitable for use in cryptography. Many platforms provide native support for cryptography, such as Web Cryptography API or Node.js Crypto.
Installation
bigint-crypto-utils is distributed for web browsers supporting BigInt as an ES6 module or a IIFE file, and for Node.js (>=10.4.0) as a CJS module.
bigint-crypto-utils can be imported to your project with npm
:
npm install bigint-crypto-utils
NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.
For web browsers, you can also directly download the minimised version of the IIFE file or the ES6 module from GitHub.
Usage example
With node js:
const bigintCryptoUtils = require('bigint-crypto-utils');
// Stage 3 BigInts with value 666 can be declared as BigInt('666')
// or the shorter new no-so-linter-friendly syntax 666n
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
// Generation of a probable prime of 2048 bits
const prime = await bigintCryptoUtils.prime(2048);
// Testing if a prime is a probable prime (Miller-Rabin)
if ( await bigintCryptoUtils.isProbablyPrime(prime) )
// code if is prime
// Get a cryptographically secure random number between 1 and 2**256 bits.
const rnd = bigintCryptoUtils.randBetween(BigInt(2)**256);
From a browser, you can just load the module in a html page as:
<script type="module">
import * as bigintCryptoUtils from 'bigint-utils-latest.browser.mod.min.js';
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
(async function () {
// Generation of a probable prime of 2018 bits
const p = await bigintCryptoUtils.prime(2048);
// Testing if a prime is a probable prime (Miller-Rabin)
const isPrime = await bigintCryptoUtils.isProbablyPrime(p);
alert(p.toString() + '\nIs prime?\n' + isPrime);
// Get a cryptographically secure random number between 1 and 2**256 bits.
const rnd = await bigintCryptoUtils.randBetween(BigInt(2)**256);
alert(rnd);
})();
</script>
bigint-crypto-utils JS Doc
Functions
- abs(a) ⇒
bigint
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
- eGcd(a, b) ⇒
egcdReturn
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
- gcd(a, b) ⇒
bigint
Greatest-common divisor of two integers based on the iterative binary algorithm.
- isProbablyPrime(w, iterations) ⇒
Promise
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
- lcm(a, b) ⇒
bigint
The least common multiple computed as abs(a*b)/gcd(a,b)
- modInv(a, n) ⇒
bigint
Modular inverse.
- modPow(a, b, n) ⇒
bigint
Modular exponentiation a**b mod n
- prime(bitLength, iterations) ⇒
Promise
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI main process, and it can be much faster (if several cores or cpu are available). The node version can also use worker_threads if they are available (enabled by default with Node 11 and and can be enabled at runtime executing node --experimental-worker with node >=10.5.0)
- randBetween(max, min) ⇒
Promise
Returns a cryptographically secure random integer between [min,max]
- randBits(bitLength, forceLength) ⇒
Promise
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
- randBytes(byteLength, forceLength) ⇒
Promise
Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
- toZn(a, n) ⇒
bigint
Finds the smallest positive element that is congruent to a in modulo n
Typedefs
- egcdReturn :
Object
A triple (g, x, y), such that ax + by = g = gcd(a, b).
abs(a) ⇒ bigint
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
Kind: global function
Returns: bigint
- the absolute value of a
Param | Type |
---|---|
a | number | bigint |
eGcd(a, b) ⇒ egcdReturn
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
Kind: global function
Param | Type |
---|---|
a | number | bigint |
b | number | bigint |
gcd(a, b) ⇒ bigint
Greatest-common divisor of two integers based on the iterative binary algorithm.
Kind: global function
Returns: bigint
- The greatest common divisor of a and b
Param | Type |
---|---|
a | number | bigint |
b | number | bigint |
isProbablyPrime(w, iterations) ⇒ Promise
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
Kind: global function
Returns: Promise
- A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
Param | Type | Description |
---|---|---|
w | bigint |
An integer to be tested for primality |
iterations | number |
The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 |
lcm(a, b) ⇒ bigint
The least common multiple computed as abs(a*b)/gcd(a,b)
Kind: global function
Returns: bigint
- The least common multiple of a and b
Param | Type |
---|---|
a | number | bigint |
b | number | bigint |
modInv(a, n) ⇒ bigint
Modular inverse.
Kind: global function
Returns: bigint
- the inverse modulo n
Param | Type | Description |
---|---|---|
a | number | bigint |
The number to find an inverse for |
n | number | bigint |
The modulo |
modPow(a, b, n) ⇒ bigint
Modular exponentiation a**b mod n
Kind: global function
Returns: bigint
- a**b mod n
Param | Type | Description |
---|---|---|
a | number | bigint |
base |
b | number | bigint |
exponent |
n | number | bigint |
modulo |
prime(bitLength, iterations) ⇒ Promise
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI main process, and it can be much faster (if several cores or cpu are available). The node version can also use worker_threads if they are available (enabled by default with Node 11 and and can be enabled at runtime executing node --experimental-worker with node >=10.5.0)
Kind: global function
Returns: Promise
- A promise that resolves to a bigint probable prime of bitLength bits
Param | Type | Description |
---|---|---|
bitLength | number |
The required bit length for the generated prime |
iterations | number |
The number of iterations for the Miller-Rabin Probabilistic Primality Test |
randBetween(max, min) ⇒ Promise
Returns a cryptographically secure random integer between [min,max]
Kind: global function
Returns: Promise
- A promise that resolves to a cryptographically secure random bigint between [min,max]
Param | Type | Description |
---|---|---|
max | bigint |
Returned value will be <= max |
min | bigint |
Returned value will be >= min |
randBits(bitLength, forceLength) ⇒ Promise
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
Kind: global function
Returns: Promise
- A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bits
Param | Type | Description |
---|---|---|
bitLength | number |
The desired number of random bits |
forceLength | boolean |
If we want to force the output to have a specific bit length. It basically forces the msb to be 1 |
randBytes(byteLength, forceLength) ⇒ Promise
Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
Kind: global function
Returns: Promise
- A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bytes
Param | Type | Description |
---|---|---|
byteLength | number |
The desired number of random bytes |
forceLength | boolean |
If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
toZn(a, n) ⇒ bigint
Finds the smallest positive element that is congruent to a in modulo n
Kind: global function
Returns: bigint
- The smallest positive representation of a in modulo n
Param | Type | Description |
---|---|---|
a | number | bigint |
An integer |
n | number | bigint |
The modulo |
egcdReturn : Object
A triple (g, x, y), such that ax + by = g = gcd(a, b).
Kind: global typedef
Properties
Name | Type |
---|---|
g | bigint |
x | bigint |
y | bigint |