894 lines
45 KiB
JavaScript
894 lines
45 KiB
JavaScript
var index_node = {};
|
||
|
||
Object.defineProperty(index_node, '__esModule', { value: true });
|
||
|
||
/**
|
||
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
|
||
*
|
||
* @param a
|
||
*
|
||
* @returns The absolute value of a
|
||
*/
|
||
function abs(a) {
|
||
return (a >= 0) ? a : -a;
|
||
}
|
||
|
||
/**
|
||
* Returns the bitlength of a number
|
||
*
|
||
* @param a
|
||
* @returns The bit length
|
||
*/
|
||
function bitLength(a) {
|
||
if (typeof a === 'number')
|
||
a = BigInt(a);
|
||
if (a === 1n) {
|
||
return 1;
|
||
}
|
||
let bits = 1;
|
||
do {
|
||
bits++;
|
||
} while ((a >>= 1n) > 1n);
|
||
return bits;
|
||
}
|
||
|
||
/**
|
||
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
||
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||
*
|
||
* @param a
|
||
* @param b
|
||
*
|
||
* @throws {RangeError}
|
||
* This excepction is thrown if a or b are less than 0
|
||
*
|
||
* @returns A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
||
*/
|
||
function eGcd(a, b) {
|
||
if (typeof a === 'number')
|
||
a = BigInt(a);
|
||
if (typeof b === 'number')
|
||
b = BigInt(b);
|
||
if (a <= 0n || b <= 0n)
|
||
throw new RangeError('a and b MUST be > 0'); // a and b MUST be positive
|
||
let x = 0n;
|
||
let y = 1n;
|
||
let u = 1n;
|
||
let v = 0n;
|
||
while (a !== 0n) {
|
||
const q = b / a;
|
||
const r = b % a;
|
||
const m = x - (u * q);
|
||
const n = y - (v * q);
|
||
b = a;
|
||
a = r;
|
||
x = u;
|
||
y = v;
|
||
u = m;
|
||
v = n;
|
||
}
|
||
return {
|
||
g: b,
|
||
x: x,
|
||
y: y
|
||
};
|
||
}
|
||
|
||
/**
|
||
* Greatest-common divisor of two integers based on the iterative binary algorithm.
|
||
*
|
||
* @param a
|
||
* @param b
|
||
*
|
||
* @returns The greatest common divisor of a and b
|
||
*/
|
||
function gcd(a, b) {
|
||
let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a);
|
||
let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b);
|
||
if (aAbs === 0n) {
|
||
return bAbs;
|
||
}
|
||
else if (bAbs === 0n) {
|
||
return aAbs;
|
||
}
|
||
let shift = 0n;
|
||
while (((aAbs | bAbs) & 1n) === 0n) {
|
||
aAbs >>= 1n;
|
||
bAbs >>= 1n;
|
||
shift++;
|
||
}
|
||
while ((aAbs & 1n) === 0n)
|
||
aAbs >>= 1n;
|
||
do {
|
||
while ((bAbs & 1n) === 0n)
|
||
bAbs >>= 1n;
|
||
if (aAbs > bAbs) {
|
||
const x = aAbs;
|
||
aAbs = bAbs;
|
||
bAbs = x;
|
||
}
|
||
bAbs -= aAbs;
|
||
} while (bAbs !== 0n);
|
||
// rescale
|
||
return aAbs << shift;
|
||
}
|
||
|
||
/**
|
||
* The least common multiple computed as abs(a*b)/gcd(a,b)
|
||
* @param a
|
||
* @param b
|
||
*
|
||
* @returns The least common multiple of a and b
|
||
*/
|
||
function lcm(a, b) {
|
||
if (typeof a === 'number')
|
||
a = BigInt(a);
|
||
if (typeof b === 'number')
|
||
b = BigInt(b);
|
||
if (a === 0n && b === 0n)
|
||
return BigInt(0);
|
||
return abs(a * b) / gcd(a, b);
|
||
}
|
||
|
||
/**
|
||
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
|
||
*
|
||
* @param a
|
||
* @param b
|
||
*
|
||
* @returns Maximum of numbers a and b
|
||
*/
|
||
function max(a, b) {
|
||
return (a >= b) ? a : b;
|
||
}
|
||
|
||
/**
|
||
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
|
||
*
|
||
* @param a
|
||
* @param b
|
||
*
|
||
* @returns Minimum of numbers a and b
|
||
*/
|
||
function min(a, b) {
|
||
return (a >= b) ? b : a;
|
||
}
|
||
|
||
/**
|
||
* Finds the smallest positive element that is congruent to a in modulo n
|
||
*
|
||
* @remarks
|
||
* a and b must be the same type, either number or bigint
|
||
*
|
||
* @param a - An integer
|
||
* @param n - The modulo
|
||
*
|
||
* @throws {RangeError}
|
||
* Excpeption thrown when n is not > 0
|
||
*
|
||
* @returns A bigint with the smallest positive representation of a modulo n
|
||
*/
|
||
function toZn(a, n) {
|
||
if (typeof a === 'number')
|
||
a = BigInt(a);
|
||
if (typeof n === 'number')
|
||
n = BigInt(n);
|
||
if (n <= 0n) {
|
||
throw new RangeError('n must be > 0');
|
||
}
|
||
const aZn = a % n;
|
||
return (aZn < 0n) ? aZn + n : aZn;
|
||
}
|
||
|
||
/**
|
||
* Modular inverse.
|
||
*
|
||
* @param a The number to find an inverse for
|
||
* @param n The modulo
|
||
*
|
||
* @throws {RangeError}
|
||
* Excpeption thorwn when a does not have inverse modulo n
|
||
*
|
||
* @returns The inverse modulo n
|
||
*/
|
||
function modInv(a, n) {
|
||
const egcd = eGcd(toZn(a, n), n);
|
||
if (egcd.g !== 1n) {
|
||
throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`); // modular inverse does not exist
|
||
}
|
||
else {
|
||
return toZn(egcd.x, n);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
|
||
*
|
||
* @param b base
|
||
* @param e exponent
|
||
* @param n modulo
|
||
*
|
||
* @throws {RangeError}
|
||
* Excpeption thrown when n is not > 0
|
||
*
|
||
* @returns b**e mod n
|
||
*/
|
||
function modPow(b, e, n) {
|
||
if (typeof b === 'number')
|
||
b = BigInt(b);
|
||
if (typeof e === 'number')
|
||
e = BigInt(e);
|
||
if (typeof n === 'number')
|
||
n = BigInt(n);
|
||
if (n <= 0n) {
|
||
throw new RangeError('n must be > 0');
|
||
}
|
||
else if (n === 1n) {
|
||
return 0n;
|
||
}
|
||
b = toZn(b, n);
|
||
if (e < 0n) {
|
||
return modInv(modPow(b, abs(e), n), n);
|
||
}
|
||
let r = 1n;
|
||
while (e > 0) {
|
||
if ((e % 2n) === 1n) {
|
||
r = r * b % n;
|
||
}
|
||
e = e / 2n;
|
||
b = b ** 2n % n;
|
||
}
|
||
return r;
|
||
}
|
||
|
||
var abs_1 = index_node.abs = abs;
|
||
var bitLength_1 = index_node.bitLength = bitLength;
|
||
var eGcd_1 = index_node.eGcd = eGcd;
|
||
var gcd_1 = index_node.gcd = gcd;
|
||
var lcm_1 = index_node.lcm = lcm;
|
||
var max_1 = index_node.max = max;
|
||
var min_1 = index_node.min = min;
|
||
var modInv_1 = index_node.modInv = modInv;
|
||
var modPow_1 = index_node.modPow = modPow;
|
||
var toZn_1 = index_node.toZn = toZn;
|
||
|
||
function fromBuffer(buf) {
|
||
let ret = 0n;
|
||
for (const i of buf.values()) {
|
||
const bi = BigInt(i);
|
||
ret = (ret << 8n) + bi;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* Secure random bytes for both node and browsers. Node version uses crypto.randomBytes() and browser one self.crypto.getRandomValues()
|
||
*
|
||
* @param byteLength - The desired number of random bytes
|
||
* @param forceLength - If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
|
||
*
|
||
* @throws {RangeError}
|
||
* byteLength MUST be > 0
|
||
*
|
||
* @returns A promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes
|
||
*/
|
||
function randBytes(byteLength, forceLength = false) {
|
||
if (byteLength < 1)
|
||
throw new RangeError('byteLength MUST be > 0');
|
||
return new Promise(function (resolve, reject) {
|
||
{
|
||
const crypto = require('crypto'); // eslint-disable-line
|
||
crypto.randomBytes(byteLength, function (err, buf) {
|
||
/* istanbul ignore if */
|
||
if (err !== null)
|
||
reject(err);
|
||
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
|
||
if (forceLength)
|
||
buf[0] = buf[0] | 128;
|
||
resolve(buf);
|
||
});
|
||
}
|
||
});
|
||
}
|
||
/**
|
||
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
||
*
|
||
* @param byteLength - The desired number of random bytes
|
||
* @param forceLength - If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
|
||
*
|
||
* @throws {RangeError}
|
||
* byteLength MUST be > 0
|
||
*
|
||
* @returns A UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes
|
||
*/
|
||
function randBytesSync(byteLength, forceLength = false) {
|
||
if (byteLength < 1)
|
||
throw new RangeError('byteLength MUST be > 0');
|
||
/* eslint-disable no-lone-blocks */
|
||
{ // node
|
||
const crypto = require('crypto'); // eslint-disable-line
|
||
const buf = crypto.randomBytes(byteLength);
|
||
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
|
||
if (forceLength)
|
||
buf[0] = buf[0] | 128;
|
||
return buf;
|
||
}
|
||
/* eslint-enable no-lone-blocks */
|
||
}
|
||
|
||
/**
|
||
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
||
*
|
||
* @param bitLength - The desired number of random bits
|
||
* @param forceLength - If we want to force the output to have a specific bit length. It basically forces the msb to be 1
|
||
*
|
||
* @throws {RangeError}
|
||
* bitLength MUST be > 0
|
||
*
|
||
* @returns A Promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits
|
||
*/
|
||
function randBits(bitLength, forceLength = false) {
|
||
if (bitLength < 1)
|
||
throw new RangeError('bitLength MUST be > 0');
|
||
const byteLength = Math.ceil(bitLength / 8);
|
||
const bitLengthMod8 = bitLength % 8;
|
||
return new Promise((resolve, reject) => {
|
||
randBytes(byteLength, false).then(function (rndBytes) {
|
||
if (bitLengthMod8 !== 0) {
|
||
// Fill with 0's the extra bits
|
||
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1);
|
||
}
|
||
if (forceLength) {
|
||
const mask = (bitLengthMod8 !== 0) ? 2 ** (bitLengthMod8 - 1) : 128;
|
||
rndBytes[0] = rndBytes[0] | mask;
|
||
}
|
||
resolve(rndBytes);
|
||
});
|
||
});
|
||
}
|
||
/**
|
||
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
||
* @param bitLength - The desired number of random bits
|
||
* @param forceLength - If we want to force the output to have a specific bit length. It basically forces the msb to be 1
|
||
*
|
||
* @throws {RangeError}
|
||
* bitLength MUST be > 0
|
||
*
|
||
* @returns A Uint8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits
|
||
*/
|
||
function randBitsSync(bitLength, forceLength = false) {
|
||
if (bitLength < 1)
|
||
throw new RangeError('bitLength MUST be > 0');
|
||
const byteLength = Math.ceil(bitLength / 8);
|
||
const rndBytes = randBytesSync(byteLength, false);
|
||
const bitLengthMod8 = bitLength % 8;
|
||
if (bitLengthMod8 !== 0) {
|
||
// Fill with 0's the extra bits
|
||
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1);
|
||
}
|
||
if (forceLength) {
|
||
const mask = (bitLengthMod8 !== 0) ? 2 ** (bitLengthMod8 - 1) : 128;
|
||
rndBytes[0] = rndBytes[0] | mask;
|
||
}
|
||
return rndBytes;
|
||
}
|
||
|
||
/**
|
||
* Returns a cryptographically secure random integer between [min,max]. Both numbers must be >=0
|
||
* @param max Returned value will be <= max
|
||
* @param min Returned value will be >= min
|
||
*
|
||
* @throws {RangeError}
|
||
* Arguments MUST be: max > 0 && min >=0 && max > min
|
||
*
|
||
* @returns A cryptographically secure random bigint between [min,max]
|
||
*/
|
||
function randBetween(max, min = 1n) {
|
||
if (max <= 0n || min < 0n || max <= min)
|
||
throw new RangeError('Arguments MUST be: max > 0 && min >=0 && max > min');
|
||
const interval = max - min;
|
||
const bitLen = bitLength_1(interval);
|
||
let rnd;
|
||
do {
|
||
const buf = randBitsSync(bitLen);
|
||
rnd = fromBuffer(buf);
|
||
} while (rnd > interval);
|
||
return rnd + min;
|
||
}
|
||
|
||
let _useWorkers = false; // The following is just to check whether we can use workers
|
||
/* eslint-disable no-lone-blocks */
|
||
{ // Node.js
|
||
try {
|
||
require.resolve('worker_threads');
|
||
_useWorkers = true;
|
||
}
|
||
catch (e) {
|
||
/* istanbul ignore next */
|
||
console.log(`[bigint-crypto-utils] WARNING:
|
||
This node version doesn't support worker_threads. You should enable them in order to greatly speedup the generation of big prime numbers.
|
||
· With Node >=11 it is enabled by default (consider upgrading).
|
||
· With Node 10, starting with 10.5.0, you can enable worker_threads at runtime executing node --experimental-worker `);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
|
||
* iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
|
||
*
|
||
* @param w - A positive integer to be tested for primality
|
||
* @param iterations - The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
|
||
* @param disableWorkers - Disable the use of workers for the primality test
|
||
*
|
||
* @throws {RangeError}
|
||
* w MUST be >= 0
|
||
*
|
||
* @returns A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
|
||
*/
|
||
function isProbablyPrime(w, iterations = 16, disableWorkers = false) {
|
||
if (typeof w === 'number') {
|
||
w = BigInt(w);
|
||
}
|
||
if (w < 0n)
|
||
throw RangeError('w MUST be >= 0');
|
||
{ // Node.js
|
||
/* istanbul ignore else */
|
||
if (!disableWorkers && _useWorkers) {
|
||
const { Worker } = require('worker_threads'); // eslint-disable-line
|
||
return new Promise((resolve, reject) => {
|
||
const worker = new Worker(__filename);
|
||
worker.on('message', (data) => {
|
||
worker.terminate();
|
||
resolve(data.isPrime);
|
||
});
|
||
worker.on('error', reject);
|
||
const msg = {
|
||
rnd: w,
|
||
iterations: iterations,
|
||
id: 0
|
||
};
|
||
worker.postMessage(msg);
|
||
});
|
||
}
|
||
else {
|
||
return new Promise((resolve) => {
|
||
resolve(_isProbablyPrime(w, iterations));
|
||
});
|
||
}
|
||
}
|
||
}
|
||
function _isProbablyPrime(w, iterations) {
|
||
/*
|
||
PREFILTERING. Even values but 2 are not primes, so don't test.
|
||
1 is not a prime and the M-R algorithm needs w>1.
|
||
*/
|
||
if (w === 2n)
|
||
return true;
|
||
else if ((w & 1n) === 0n || w === 1n)
|
||
return false;
|
||
/*
|
||
Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above.
|
||
*/
|
||
const firstPrimes = [
|
||
3n,
|
||
5n,
|
||
7n,
|
||
11n,
|
||
13n,
|
||
17n,
|
||
19n,
|
||
23n,
|
||
29n,
|
||
31n,
|
||
37n,
|
||
41n,
|
||
43n,
|
||
47n,
|
||
53n,
|
||
59n,
|
||
61n,
|
||
67n,
|
||
71n,
|
||
73n,
|
||
79n,
|
||
83n,
|
||
89n,
|
||
97n,
|
||
101n,
|
||
103n,
|
||
107n,
|
||
109n,
|
||
113n,
|
||
127n,
|
||
131n,
|
||
137n,
|
||
139n,
|
||
149n,
|
||
151n,
|
||
157n,
|
||
163n,
|
||
167n,
|
||
173n,
|
||
179n,
|
||
181n,
|
||
191n,
|
||
193n,
|
||
197n,
|
||
199n,
|
||
211n,
|
||
223n,
|
||
227n,
|
||
229n,
|
||
233n,
|
||
239n,
|
||
241n,
|
||
251n,
|
||
257n,
|
||
263n,
|
||
269n,
|
||
271n,
|
||
277n,
|
||
281n,
|
||
283n,
|
||
293n,
|
||
307n,
|
||
311n,
|
||
313n,
|
||
317n,
|
||
331n,
|
||
337n,
|
||
347n,
|
||
349n,
|
||
353n,
|
||
359n,
|
||
367n,
|
||
373n,
|
||
379n,
|
||
383n,
|
||
389n,
|
||
397n,
|
||
401n,
|
||
409n,
|
||
419n,
|
||
421n,
|
||
431n,
|
||
433n,
|
||
439n,
|
||
443n,
|
||
449n,
|
||
457n,
|
||
461n,
|
||
463n,
|
||
467n,
|
||
479n,
|
||
487n,
|
||
491n,
|
||
499n,
|
||
503n,
|
||
509n,
|
||
521n,
|
||
523n,
|
||
541n,
|
||
547n,
|
||
557n,
|
||
563n,
|
||
569n,
|
||
571n,
|
||
577n,
|
||
587n,
|
||
593n,
|
||
599n,
|
||
601n,
|
||
607n,
|
||
613n,
|
||
617n,
|
||
619n,
|
||
631n,
|
||
641n,
|
||
643n,
|
||
647n,
|
||
653n,
|
||
659n,
|
||
661n,
|
||
673n,
|
||
677n,
|
||
683n,
|
||
691n,
|
||
701n,
|
||
709n,
|
||
719n,
|
||
727n,
|
||
733n,
|
||
739n,
|
||
743n,
|
||
751n,
|
||
757n,
|
||
761n,
|
||
769n,
|
||
773n,
|
||
787n,
|
||
797n,
|
||
809n,
|
||
811n,
|
||
821n,
|
||
823n,
|
||
827n,
|
||
829n,
|
||
839n,
|
||
853n,
|
||
857n,
|
||
859n,
|
||
863n,
|
||
877n,
|
||
881n,
|
||
883n,
|
||
887n,
|
||
907n,
|
||
911n,
|
||
919n,
|
||
929n,
|
||
937n,
|
||
941n,
|
||
947n,
|
||
953n,
|
||
967n,
|
||
971n,
|
||
977n,
|
||
983n,
|
||
991n,
|
||
997n,
|
||
1009n,
|
||
1013n,
|
||
1019n,
|
||
1021n,
|
||
1031n,
|
||
1033n,
|
||
1039n,
|
||
1049n,
|
||
1051n,
|
||
1061n,
|
||
1063n,
|
||
1069n,
|
||
1087n,
|
||
1091n,
|
||
1093n,
|
||
1097n,
|
||
1103n,
|
||
1109n,
|
||
1117n,
|
||
1123n,
|
||
1129n,
|
||
1151n,
|
||
1153n,
|
||
1163n,
|
||
1171n,
|
||
1181n,
|
||
1187n,
|
||
1193n,
|
||
1201n,
|
||
1213n,
|
||
1217n,
|
||
1223n,
|
||
1229n,
|
||
1231n,
|
||
1237n,
|
||
1249n,
|
||
1259n,
|
||
1277n,
|
||
1279n,
|
||
1283n,
|
||
1289n,
|
||
1291n,
|
||
1297n,
|
||
1301n,
|
||
1303n,
|
||
1307n,
|
||
1319n,
|
||
1321n,
|
||
1327n,
|
||
1361n,
|
||
1367n,
|
||
1373n,
|
||
1381n,
|
||
1399n,
|
||
1409n,
|
||
1423n,
|
||
1427n,
|
||
1429n,
|
||
1433n,
|
||
1439n,
|
||
1447n,
|
||
1451n,
|
||
1453n,
|
||
1459n,
|
||
1471n,
|
||
1481n,
|
||
1483n,
|
||
1487n,
|
||
1489n,
|
||
1493n,
|
||
1499n,
|
||
1511n,
|
||
1523n,
|
||
1531n,
|
||
1543n,
|
||
1549n,
|
||
1553n,
|
||
1559n,
|
||
1567n,
|
||
1571n,
|
||
1579n,
|
||
1583n,
|
||
1597n
|
||
];
|
||
for (let i = 0; i < firstPrimes.length && (firstPrimes[i] <= w); i++) {
|
||
const p = firstPrimes[i];
|
||
if (w === p)
|
||
return true;
|
||
else if (w % p === 0n)
|
||
return false;
|
||
}
|
||
/*
|
||
1. Let a be the largest integer such that 2**a divides w−1.
|
||
2. m = (w−1) / 2**a.
|
||
3. wlen = len (w).
|
||
4. For i = 1 to iterations do
|
||
4.1 Obtain a string b of wlen bits from an RBG.
|
||
Comment: Ensure that 1 < b < w−1.
|
||
4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1.
|
||
4.3 z = b**m mod w.
|
||
4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7.
|
||
4.5 For j = 1 to a − 1 do.
|
||
4.5.1 z = z**2 mod w.
|
||
4.5.2 If (z = w−1), then go to step 4.7.
|
||
4.5.3 If (z = 1), then go to step 4.6.
|
||
4.6 Return COMPOSITE.
|
||
4.7 Continue.
|
||
Comment: Increment i for the do-loop in step 4.
|
||
5. Return PROBABLY PRIME.
|
||
*/
|
||
let a = 0n;
|
||
const d = w - 1n;
|
||
let aux = d;
|
||
while (aux % 2n === 0n) {
|
||
aux /= 2n;
|
||
++a;
|
||
}
|
||
const m = d / (2n ** a);
|
||
do {
|
||
const b = randBetween(d, 2n);
|
||
let z = modPow_1(b, m, w);
|
||
if (z === 1n || z === d)
|
||
continue;
|
||
let j = 1;
|
||
while (j < a) {
|
||
z = modPow_1(z, 2n, w);
|
||
if (z === d)
|
||
break;
|
||
if (z === 1n)
|
||
return false;
|
||
j++;
|
||
}
|
||
if (z !== d)
|
||
return false;
|
||
} while (--iterations !== 0);
|
||
return true;
|
||
}
|
||
if (_useWorkers) { // node.js with support for workers
|
||
const { parentPort, isMainThread } = require('worker_threads'); // eslint-disable-line
|
||
const isWorker = !isMainThread;
|
||
/* istanbul ignore if */
|
||
if (isWorker) { // worker
|
||
parentPort.on('message', function (data) {
|
||
const isPrime = _isProbablyPrime(data.rnd, data.iterations);
|
||
const msg = {
|
||
isPrime: isPrime,
|
||
value: data.rnd,
|
||
id: data.id
|
||
};
|
||
parentPort.postMessage(msg);
|
||
});
|
||
}
|
||
}
|
||
|
||
/**
|
||
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
||
* The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
|
||
* main process, and it can be much faster (if several cores or cpu are available).
|
||
* The node version can also use worker_threads if they are available (enabled by default with Node 11 and
|
||
* and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
|
||
*
|
||
* @param bitLength - The required bit length for the generated prime
|
||
* @param iterations - The number of iterations for the Miller-Rabin Probabilistic Primality Test
|
||
*
|
||
* @throws {RangeError}
|
||
* bitLength MUST be > 0
|
||
*
|
||
* @returns A promise that resolves to a bigint probable prime of bitLength bits.
|
||
*/
|
||
function prime(bitLength, iterations = 16) {
|
||
if (bitLength < 1)
|
||
throw new RangeError('bitLength MUST be > 0');
|
||
/* istanbul ignore if */
|
||
if (!_useWorkers) { // If there is no support for workers
|
||
let rnd = 0n;
|
||
do {
|
||
rnd = fromBuffer(randBitsSync(bitLength, true));
|
||
} while (!_isProbablyPrime(rnd, iterations));
|
||
return new Promise((resolve) => { resolve(rnd); });
|
||
}
|
||
return new Promise((resolve, reject) => {
|
||
const workerList = [];
|
||
const _onmessage = (msg, newWorker) => {
|
||
if (msg.isPrime) {
|
||
// if a prime number has been found, stop all the workers, and return it
|
||
for (let j = 0; j < workerList.length; j++) {
|
||
workerList[j].terminate();
|
||
}
|
||
while (workerList.length > 0) {
|
||
workerList.pop();
|
||
}
|
||
resolve(msg.value);
|
||
}
|
||
else { // if a composite is found, make the worker test another random number
|
||
const buf = randBitsSync(bitLength, true);
|
||
const rnd = fromBuffer(buf);
|
||
try {
|
||
const msgToWorker = {
|
||
rnd: rnd,
|
||
iterations: iterations,
|
||
id: msg.id
|
||
};
|
||
newWorker.postMessage(msgToWorker);
|
||
}
|
||
catch (error) {
|
||
// The worker has already terminated. There is nothing to handle here
|
||
}
|
||
}
|
||
};
|
||
{ // Node.js
|
||
const { cpus } = require('os'); // eslint-disable-line
|
||
const { Worker } = require('worker_threads'); // eslint-disable-line
|
||
for (let i = 0; i < cpus().length - 1; i++) {
|
||
const newWorker = new Worker(__filename);
|
||
newWorker.on('message', (msg) => _onmessage(msg, newWorker));
|
||
workerList.push(newWorker);
|
||
}
|
||
}
|
||
for (let i = 0; i < workerList.length; i++) {
|
||
randBits(bitLength, true).then(function (buf) {
|
||
const rnd = fromBuffer(buf);
|
||
workerList[i].postMessage({
|
||
rnd: rnd,
|
||
iterations: iterations,
|
||
id: i
|
||
});
|
||
}).catch(reject);
|
||
}
|
||
});
|
||
}
|
||
/**
|
||
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
||
* The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
|
||
*
|
||
* @param bitLength - The required bit length for the generated prime
|
||
* @param iterations - The number of iterations for the Miller-Rabin Probabilistic Primality Test
|
||
*
|
||
* @throws {RangeError}
|
||
* bitLength MUST be > 0
|
||
*
|
||
* @returns A bigint probable prime of bitLength bits.
|
||
*/
|
||
function primeSync(bitLength, iterations = 16) {
|
||
if (bitLength < 1)
|
||
throw new RangeError('bitLength MUST be > 0');
|
||
let rnd = 0n;
|
||
do {
|
||
rnd = fromBuffer(randBitsSync(bitLength, true));
|
||
} while (!_isProbablyPrime(rnd, iterations));
|
||
return rnd;
|
||
}
|
||
|
||
export { abs_1 as abs, bitLength_1 as bitLength, eGcd_1 as eGcd, gcd_1 as gcd, isProbablyPrime, lcm_1 as lcm, max_1 as max, min_1 as min, modInv_1 as modInv, modPow_1 as modPow, prime, primeSync, randBetween, randBits, randBitsSync, randBytes, randBytesSync, toZn_1 as toZn };
|
||
//# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXgubm9kZS5qcyIsInNvdXJjZXMiOlsiLi4vLi4vbm9kZV9tb2R1bGVzL2JpZ2ludC1tb2QtYXJpdGgvZGlzdC9janMvaW5kZXgubm9kZS5janMiLCIuLi8uLi9zcmMvdHMvZnJvbUJ1ZmZlci50cyIsIi4uLy4uL3NyYy90cy9yYW5kQnl0ZXMudHMiLCIuLi8uLi9zcmMvdHMvcmFuZEJpdHMudHMiLCIuLi8uLi9zcmMvdHMvcmFuZEJldHdlZW4udHMiLCIuLi8uLi9zcmMvdHMvd29ya2VyVXRpbHMudHMiLCIuLi8uLi9zcmMvdHMvaXNQcm9iYWJseVByaW1lLnRzIiwiLi4vLi4vc3JjL3RzL3ByaW1lLnRzIl0sInNvdXJjZXNDb250ZW50IjpudWxsLCJuYW1lcyI6WyJiaXRMZW5ndGgiLCJtb2RQb3ciXSwibWFwcGluZ3MiOiI7O0FBRUEsTUFBTSxDQUFDLGNBQWMsQ0FBQyxVQUFPLEVBQUUsWUFBWSxFQUFFLEVBQUUsS0FBSyxFQUFFLElBQUksRUFBRSxDQUFDLENBQUM7QUFDOUQ7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBLFNBQVMsR0FBRyxDQUFDLENBQUMsRUFBRTtBQUNoQixJQUFJLE9BQU8sQ0FBQyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQztBQUM3QixDQUFDO0FBQ0Q7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQSxTQUFTLFNBQVMsQ0FBQyxDQUFDLEVBQUU7QUFDdEIsSUFBSSxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFDN0IsUUFBUSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ3RCLElBQUksSUFBSSxDQUFDLEtBQUssRUFBRSxFQUFFO0FBQ2xCLFFBQVEsT0FBTyxDQUFDLENBQUM7QUFDakIsS0FBSztBQUNMLElBQUksSUFBSSxJQUFJLEdBQUcsQ0FBQyxDQUFDO0FBQ2pCLElBQUksR0FBRztBQUNQLFFBQVEsSUFBSSxFQUFFLENBQUM7QUFDZixLQUFLLFFBQVEsQ0FBQyxDQUFDLEtBQUssRUFBRSxJQUFJLEVBQUUsRUFBRTtBQUM5QixJQUFJLE9BQU8sSUFBSSxDQUFDO0FBQ2hCLENBQUM7QUFDRDtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBLFNBQVMsSUFBSSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUU7QUFDcEIsSUFBSSxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFDN0IsUUFBUSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ3RCLElBQUksSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQzdCLFFBQVEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUN0QixJQUFJLElBQUksQ0FBQyxJQUFJLEVBQUUsSUFBSSxDQUFDLElBQUksRUFBRTtBQUMxQixRQUFRLE1BQU0sSUFBSSxVQUFVLENBQUMscUJBQXFCLENBQUMsQ0FBQztBQUNwRCxJQUFJLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQztBQUNmLElBQUksSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFDO0FBQ2YsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7QUFDZixJQUFJLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQztBQUNmLElBQUksT0FBTyxDQUFDLEtBQUssRUFBRSxFQUFFO0FBQ3JCLFFBQVEsTUFBTSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUN4QixRQUFRLE1BQU0sQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDeEIsUUFBUSxNQUFNLENBQUMsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDO0FBQzlCLFFBQVEsTUFBTSxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQztBQUM5QixRQUFRLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDZCxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDZCxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDZCxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDZCxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDZCxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDZCxLQUFLO0FBQ0wsSUFBSSxPQUFPO0FBQ1gsUUFBUSxDQUFDLEVBQUUsQ0FBQztBQUNaLFFBQVEsQ0FBQyxFQUFFLENBQUM7QUFDWixRQUFRLENBQUMsRUFBRSxDQUFDO0FBQ1osS0FBSyxDQUFDO0FBQ04sQ0FBQztBQUNEO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBLFNBQVMsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUU7QUFDbkIsSUFBSSxJQUFJLElBQUksR0FBRyxDQUFDLE9BQU8sQ0FBQyxLQUFLLFFBQVEsSUFBSSxNQUFNLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ2pFLElBQUksSUFBSSxJQUFJLEdBQUcsQ0FBQyxPQUFPLENBQUMsS0FBSyxRQUFRLElBQUksTUFBTSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUNqRSxJQUFJLElBQUksSUFBSSxLQUFLLEVBQUUsRUFBRTtBQUNyQixRQUFRLE9BQU8sSUFBSSxDQUFDO0FBQ3BCLEtBQUs7QUFDTCxTQUFTLElBQUksSUFBSSxLQUFLLEVBQUUsRUFBRTtBQUMxQixRQUFRLE9BQU8sSUFBSSxDQUFDO0FBQ3BCLEtBQUs7QUFDTCxJQUFJLElBQUksS0FBSyxHQUFHLEVBQUUsQ0FBQztBQUNuQixJQUFJLE9BQU8sQ0FBQyxDQUFDLElBQUksR0FBRyxJQUFJLElBQUksRUFBRSxNQUFNLEVBQUUsRUFBRTtBQUN4QyxRQUFRLElBQUksS0FBSyxFQUFFLENBQUM7QUFDcEIsUUFBUSxJQUFJLEtBQUssRUFBRSxDQUFDO0FBQ3BCLFFBQVEsS0FBSyxFQUFFLENBQUM7QUFDaEIsS0FBSztBQUNMLElBQUksT0FBTyxDQUFDLElBQUksR0FBRyxFQUFFLE1BQU0sRUFBRTtBQUM3QixRQUFRLElBQUksS0FBSyxFQUFFLENBQUM7QUFDcEIsSUFBSSxHQUFHO0FBQ1AsUUFBUSxPQUFPLENBQUMsSUFBSSxHQUFHLEVBQUUsTUFBTSxFQUFFO0FBQ2pDLFlBQVksSUFBSSxLQUFLLEVBQUUsQ0FBQztBQUN4QixRQUFRLElBQUksSUFBSSxHQUFHLElBQUksRUFBRTtBQUN6QixZQUFZLE1BQU0sQ0FBQyxHQUFHLElBQUksQ0FBQztBQUMzQixZQUFZLElBQUksR0FBRyxJQUFJLENBQUM7QUFDeEIsWUFBWSxJQUFJLEdBQUcsQ0FBQyxDQUFDO0FBQ3JCLFNBQVM7QUFDVCxRQUFRLElBQUksSUFBSSxJQUFJLENBQUM7QUFDckIsS0FBSyxRQUFRLElBQUksS0FBSyxFQUFFLEVBQUU7QUFDMUI7QUFDQSxJQUFJLE9BQU8sSUFBSSxJQUFJLEtBQUssQ0FBQztBQUN6QixDQUFDO0FBQ0Q7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBLFNBQVMsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUU7QUFDbkIsSUFBSSxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFDN0IsUUFBUSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ3RCLElBQUksSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQzdCLFFBQVEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUN0QixJQUFJLElBQUksQ0FBQyxLQUFLLEVBQUUsSUFBSSxDQUFDLEtBQUssRUFBRTtBQUM1QixRQUFRLE9BQU8sTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ3pCLElBQUksT0FBTyxHQUFHLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxHQUFHLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7QUFDbEMsQ0FBQztBQUNEO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBLFNBQVMsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUU7QUFDbkIsSUFBSSxPQUFPLENBQUMsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQzVCLENBQUM7QUFDRDtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQSxTQUFTLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFO0FBQ25CLElBQUksT0FBTyxDQUFDLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUM1QixDQUFDO0FBQ0Q7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0EsU0FBUyxJQUFJLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRTtBQUNwQixJQUFJLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUM3QixRQUFRLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDdEIsSUFBSSxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFDN0IsUUFBUSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ3RCLElBQUksSUFBSSxDQUFDLElBQUksRUFBRSxFQUFFO0FBQ2pCLFFBQVEsTUFBTSxJQUFJLFVBQVUsQ0FBQyxlQUFlLENBQUMsQ0FBQztBQUM5QyxLQUFLO0FBQ0wsSUFBSSxNQUFNLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQ3RCLElBQUksT0FBTyxDQUFDLEdBQUcsR0FBRyxFQUFFLElBQUksR0FBRyxHQUFHLENBQUMsR0FBRyxHQUFHLENBQUM7QUFDdEMsQ0FBQztBQUNEO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBLFNBQVMsTUFBTSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUU7QUFDdEIsSUFBSSxNQUFNLElBQUksR0FBRyxJQUFJLENBQUMsSUFBSSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztBQUNyQyxJQUFJLElBQUksSUFBSSxDQUFDLENBQUMsS0FBSyxFQUFFLEVBQUU7QUFDdkIsUUFBUSxNQUFNLElBQUksVUFBVSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsUUFBUSxFQUFFLENBQUMsOEJBQThCLEVBQUUsQ0FBQyxDQUFDLFFBQVEsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQzdGLEtBQUs7QUFDTCxTQUFTO0FBQ1QsUUFBUSxPQUFPLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO0FBQy9CLEtBQUs7QUFDTCxDQUFDO0FBQ0Q7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQSxTQUFTLE1BQU0sQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRTtBQUN6QixJQUFJLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUM3QixRQUFRLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDdEIsSUFBSSxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFDN0IsUUFBUSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ3RCLElBQUksSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQzdCLFFBQVEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUN0QixJQUFJLElBQUksQ0FBQyxJQUFJLEVBQUUsRUFBRTtBQUNqQixRQUFRLE1BQU0sSUFBSSxVQUFVLENBQUMsZUFBZSxDQUFDLENBQUM7QUFDOUMsS0FBSztBQUNMLFNBQVMsSUFBSSxDQUFDLEtBQUssRUFBRSxFQUFFO0FBQ3ZCLFFBQVEsT0FBTyxFQUFFLENBQUM7QUFDbEIsS0FBSztBQUNMLElBQUksQ0FBQyxHQUFHLElBQUksQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7QUFDbkIsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLEVBQUU7QUFDaEIsUUFBUSxPQUFPLE1BQU0sQ0FBQyxNQUFNLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztBQUMvQyxLQUFLO0FBQ0wsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7QUFDZixJQUFJLE9BQU8sQ0FBQyxHQUFHLENBQUMsRUFBRTtBQUNsQixRQUFRLElBQUksQ0FBQyxDQUFDLEdBQUcsRUFBRSxNQUFNLEVBQUUsRUFBRTtBQUM3QixZQUFZLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUMxQixTQUFTO0FBQ1QsUUFBUSxDQUFDLEdBQUcsQ0FBQyxHQUFHLEVBQUUsQ0FBQztBQUNuQixRQUFRLENBQUMsR0FBRyxDQUFDLElBQUksRUFBRSxHQUFHLENBQUMsQ0FBQztBQUN4QixLQUFLO0FBQ0wsSUFBSSxPQUFPLENBQUMsQ0FBQztBQUNiLENBQUM7QUFDRDswQkFDVyxHQUFHLElBQUk7c0NBQ0QsR0FBRyxVQUFVOzRCQUNsQixHQUFHLEtBQUs7MEJBQ1QsR0FBRyxJQUFJOzBCQUNQLEdBQUcsSUFBSTswQkFDUCxHQUFHLElBQUk7MEJBQ1AsR0FBRyxJQUFJO2dDQUNKLEdBQUcsT0FBTztnQ0FDVixHQUFHLE9BQU87NEJBQ1osR0FBRzs7U0M1UEMsVUFBVSxDQUFFLEdBQXNCO0lBQ2hELElBQUksR0FBRyxHQUFHLEVBQUUsQ0FBQTtJQUNaLEtBQUssTUFBTSxDQUFDLElBQUksR0FBRyxDQUFDLE1BQU0sRUFBRSxFQUFFO1FBQzVCLE1BQU0sRUFBRSxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtRQUNwQixHQUFHLEdBQUcsQ0FBQyxHQUFHLElBQUksRUFBRSxJQUFJLEVBQUUsQ0FBQTtLQUN2QjtJQUNELE9BQU8sR0FBRyxDQUFBO0FBQ1o7O0FDUEE7Ozs7Ozs7Ozs7O1NBV2dCLFNBQVMsQ0FBRSxVQUFrQixFQUFFLFdBQVcsR0FBRyxLQUFLO0lBQ2hFLElBQUksVUFBVSxHQUFHLENBQUM7UUFBRSxNQUFNLElBQUksVUFBVSxDQUFDLHdCQUF3QixDQUFDLENBQUE7SUFFbEUsT0FBTyxJQUFJLE9BQU8sQ0FBQyxVQUFVLE9BQU8sRUFBRSxNQUFNO1FBQ3pCO1lBQ2YsTUFBTSxNQUFNLEdBQUcsT0FBTyxDQUFDLFFBQVEsQ0FBQyxDQUFBO1lBQ2hDLE1BQU0sQ0FBQyxXQUFXLENBQUMsVUFBVSxFQUFFLFVBQVUsR0FBVSxFQUFFLEdBQVc7O2dCQUU5RCxJQUFJLEdBQUcsS0FBSyxJQUFJO29CQUFFLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQTs7Z0JBRTdCLElBQUksV0FBVztvQkFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUMsQ0FBQyxHQUFHLEdBQUcsQ0FBQTtnQkFDdEMsT0FBTyxDQUFDLEdBQUcsQ0FBQyxDQUFBO2FBQ2IsQ0FBQyxDQUFBO1NBT0g7S0FDRixDQUFDLENBQUE7QUFDSixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7O1NBV2dCLGFBQWEsQ0FBRSxVQUFrQixFQUFFLGNBQXVCLEtBQUs7SUFDN0UsSUFBSSxVQUFVLEdBQUcsQ0FBQztRQUFFLE1BQU0sSUFBSSxVQUFVLENBQUMsd0JBQXdCLENBQUMsQ0FBQTs7SUFHakQ7UUFDZixNQUFNLE1BQU0sR0FBRyxPQUFPLENBQUMsUUFBUSxDQUFDLENBQUE7UUFDaEMsTUFBTSxHQUFHLEdBQUcsTUFBTSxDQUFDLFdBQVcsQ0FBQyxVQUFVLENBQUMsQ0FBQTs7UUFFMUMsSUFBSSxXQUFXO1lBQUUsR0FBRyxDQUFDLENBQUMsQ0FBQyxHQUFHLEdBQUcsQ0FBQyxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUE7UUFDdEMsT0FBTyxHQUFHLENBQUE7S0FPWDs7QUFFSDs7QUM3REE7Ozs7Ozs7Ozs7O1NBV2dCLFFBQVEsQ0FBRSxTQUFpQixFQUFFLGNBQXVCLEtBQUs7SUFDdkUsSUFBSSxTQUFTLEdBQUcsQ0FBQztRQUFFLE1BQU0sSUFBSSxVQUFVLENBQUMsdUJBQXVCLENBQUMsQ0FBQTtJQUVoRSxNQUFNLFVBQVUsR0FBRyxJQUFJLENBQUMsSUFBSSxDQUFDLFNBQVMsR0FBRyxDQUFDLENBQUMsQ0FBQTtJQUMzQyxNQUFNLGFBQWEsR0FBRyxTQUFTLEdBQUcsQ0FBQyxDQUFBO0lBRW5DLE9BQU8sSUFBSSxPQUFPLENBQUMsQ0FBQyxPQUFPLEVBQUUsTUFBTTtRQUNqQyxTQUFTLENBQUMsVUFBVSxFQUFFLEtBQUssQ0FBQyxDQUFDLElBQUksQ0FBQyxVQUFVLFFBQVE7WUFDbEQsSUFBSSxhQUFhLEtBQUssQ0FBQyxFQUFFOztnQkFFdkIsUUFBUSxDQUFDLENBQUMsQ0FBQyxHQUFHLFFBQVEsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLElBQUksYUFBYSxHQUFHLENBQUMsQ0FBQyxDQUFBO2FBQ3JEO1lBQ0QsSUFBSSxXQUFXLEVBQUU7Z0JBQ2YsTUFBTSxJQUFJLEdBQUcsQ0FBQyxhQUFhLEtBQUssQ0FBQyxJQUFJLENBQUMsS0FBSyxhQUFhLEdBQUcsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFBO2dCQUNuRSxRQUFRLENBQUMsQ0FBQyxDQUFDLEdBQUcsUUFBUSxDQUFDLENBQUMsQ0FBQyxHQUFHLElBQUksQ0FBQTthQUNqQztZQUNELE9BQU8sQ0FBQyxRQUFRLENBQUMsQ0FBQTtTQUNsQixDQUFDLENBQUE7S0FDSCxDQUFDLENBQUE7QUFDSixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7U0FVZ0IsWUFBWSxDQUFFLFNBQWlCLEVBQUUsY0FBdUIsS0FBSztJQUMzRSxJQUFJLFNBQVMsR0FBRyxDQUFDO1FBQUUsTUFBTSxJQUFJLFVBQVUsQ0FBQyx1QkFBdUIsQ0FBQyxDQUFBO0lBRWhFLE1BQU0sVUFBVSxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUMsU0FBUyxHQUFHLENBQUMsQ0FBQyxDQUFBO0lBQzNDLE1BQU0sUUFBUSxHQUFHLGFBQWEsQ0FBQyxVQUFVLEVBQUUsS0FBSyxDQUFDLENBQUE7SUFDakQsTUFBTSxhQUFhLEdBQUcsU0FBUyxHQUFHLENBQUMsQ0FBQTtJQUNuQyxJQUFJLGFBQWEsS0FBSyxDQUFDLEVBQUU7O1FBRXZCLFFBQVEsQ0FBQyxDQUFDLENBQUMsR0FBRyxRQUFRLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxJQUFJLGFBQWEsR0FBRyxDQUFDLENBQUMsQ0FBQTtLQUNyRDtJQUNELElBQUksV0FBVyxFQUFFO1FBQ2YsTUFBTSxJQUFJLEdBQUcsQ0FBQyxhQUFhLEtBQUssQ0FBQyxJQUFJLENBQUMsS0FBSyxhQUFhLEdBQUcsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFBO1FBQ25FLFFBQVEsQ0FBQyxDQUFDLENBQUMsR0FBRyxRQUFRLENBQUMsQ0FBQyxDQUFDLEdBQUcsSUFBSSxDQUFBO0tBQ2pDO0lBQ0QsT0FBTyxRQUFRLENBQUE7QUFDakI7O0FDdkRBOzs7Ozs7Ozs7O1NBVWdCLFdBQVcsQ0FBRSxHQUFXLEVBQUUsTUFBYyxFQUFFO0lBQ3hELElBQUksR0FBRyxJQUFJLEVBQUUsSUFBSSxHQUFHLEdBQUcsRUFBRSxJQUFJLEdBQUcsSUFBSSxHQUFHO1FBQUUsTUFBTSxJQUFJLFVBQVUsQ0FBQyxvREFBb0QsQ0FBQyxDQUFBO0lBQ25ILE1BQU0sUUFBUSxHQUFHLEdBQUcsR0FBRyxHQUFHLENBQUE7SUFDMUIsTUFBTSxNQUFNLEdBQUdBLFdBQVMsQ0FBQyxRQUFRLENBQUMsQ0FBQTtJQUNsQyxJQUFJLEdBQUcsQ0FBQTtJQUNQLEdBQUc7UUFDRCxNQUFNLEdBQUcsR0FBRyxZQUFZLENBQUMsTUFBTSxDQUFDLENBQUE7UUFDaEMsR0FBRyxHQUFHLFVBQVUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtLQUN0QixRQUFRLEdBQUcsR0FBRyxRQUFRLEVBQUM7SUFDeEIsT0FBTyxHQUFHLEdBQUcsR0FBRyxDQUFBO0FBQ2xCOztBQ2xCQSxJQUFJLFdBQVcsR0FBRyxLQUFLLENBQUE7QUFDdkI7QUFDaUI7SUFDZixJQUFJO1FBQ0YsT0FBTyxDQUFDLE9BQU8sQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFBO1FBQ2pDLFdBQVcsR0FBRyxJQUFJLENBQUE7S0FDbkI7SUFBQyxPQUFPLENBQUMsRUFBRTs7UUFFVixPQUFPLENBQUMsR0FBRyxDQUFDOzs7dUhBR3VHLENBQUMsQ0FBQTtLQUNySDs7O0FDWEg7Ozs7Ozs7Ozs7Ozs7U0FhZ0IsZUFBZSxDQUFFLENBQWdCLEVBQUUsYUFBcUIsRUFBRSxFQUFFLGlCQUEwQixLQUFLO0lBQ3pHLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUSxFQUFFO1FBQ3pCLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUE7S0FDZDtJQUNELElBQUksQ0FBQyxHQUFHLEVBQUU7UUFBRSxNQUFNLFVBQVUsQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFBO0lBRTdCOztRQUVmLElBQUksQ0FBQyxjQUFjLElBQUksV0FBVyxFQUFFO1lBQ2xDLE1BQU0sRUFBRSxNQUFNLEVBQUUsR0FBRyxPQUFPLENBQUMsZ0JBQWdCLENBQUMsQ0FBQTtZQUM1QyxPQUFPLElBQUksT0FBTyxDQUFDLENBQUMsT0FBTyxFQUFFLE1BQU07Z0JBQ2pDLE1BQU0sTUFBTSxHQUFHLElBQUksTUFBTSxDQUFDLFVBQVUsQ0FBQyxDQUFBO2dCQUVyQyxNQUFNLENBQUMsRUFBRSxDQUFDLFNBQVMsRUFBRSxDQUFDLElBQXFCO29CQUN6QyxNQUFNLENBQUMsU0FBUyxFQUFFLENBQUE7b0JBQ2xCLE9BQU8sQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUE7aUJBQ3RCLENBQUMsQ0FBQTtnQkFFRixNQUFNLENBQUMsRUFBRSxDQUFDLE9BQU8sRUFBRSxNQUFNLENBQUMsQ0FBQTtnQkFFMUIsTUFBTSxHQUFHLEdBQW9CO29CQUMzQixHQUFHLEVBQUUsQ0FBVztvQkFDaEIsVUFBVSxFQUFFLFVBQVU7b0JBQ3RCLEVBQUUsRUFBRSxDQUFDO2lCQUNOLENBQUE7Z0JBQ0QsTUFBTSxDQUFDLFdBQVcsQ0FBQyxHQUFHLENBQUMsQ0FBQTthQUN4QixDQUFDLENBQUE7U0FDSDthQUFNO1lBQ0wsT0FBTyxJQUFJLE9BQU8sQ0FBQyxDQUFDLE9BQU87Z0JBQ3pCLE9BQU8sQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFXLEVBQUUsVUFBVSxDQUFDLENBQUMsQ0FBQTthQUNuRCxDQUFDLENBQUE7U0FDSDtLQXFCRjtBQUNILENBQUM7U0FFZSxnQkFBZ0IsQ0FBRSxDQUFTLEVBQUUsVUFBa0I7Ozs7O0lBSzdELElBQUksQ0FBQyxLQUFLLEVBQUU7UUFBRSxPQUFPLElBQUksQ0FBQTtTQUNwQixJQUFJLENBQUMsQ0FBQyxHQUFHLEVBQUUsTUFBTSxFQUFFLElBQUksQ0FBQyxLQUFLLEVBQUU7UUFBRSxPQUFPLEtBQUssQ0FBQTs7OztJQUtsRCxNQUFNLFdBQVcsR0FBRztRQUNsQixFQUFFO1FBQ0YsRUFBRTtRQUNGLEVBQUU7UUFDRixHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO0tBQ04sQ0FBQTtJQUVELEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxXQUFXLENBQUMsTUFBTSxLQUFLLFdBQVcsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsRUFBRTtRQUNwRSxNQUFNLENBQUMsR0FBRyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUE7UUFDeEIsSUFBSSxDQUFDLEtBQUssQ0FBQztZQUFFLE9BQU8sSUFBSSxDQUFBO2FBQ25CLElBQUksQ0FBQyxHQUFHLENBQUMsS0FBSyxFQUFFO1lBQUUsT0FBTyxLQUFLLENBQUE7S0FDcEM7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0lBcUJELElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQTtJQUNWLE1BQU0sQ0FBQyxHQUFHLENBQUMsR0FBRyxFQUFFLENBQUE7SUFDaEIsSUFBSSxHQUFHLEdBQUcsQ0FBQyxDQUFBO0lBQ1gsT0FBTyxHQUFHLEdBQUcsRUFBRSxLQUFLLEVBQUUsRUFBRTtRQUN0QixHQUFHLElBQUksRUFBRSxDQUFBO1FBQ1QsRUFBRSxDQUFDLENBQUE7S0FDSjtJQUVELE1BQU0sQ0FBQyxHQUFHLENBQUMsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDLENBQUE7SUFFdkIsR0FBRztRQUNELE1BQU0sQ0FBQyxHQUFHLFdBQVcsQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUE7UUFDNUIsSUFBSSxDQUFDLEdBQUdDLFFBQU0sQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFBO1FBQ3ZCLElBQUksQ0FBQyxLQUFLLEVBQUUsSUFBSSxDQUFDLEtBQUssQ0FBQztZQUFFLFNBQVE7UUFDakMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ1QsT0FBTyxDQUFDLEdBQUcsQ0FBQyxFQUFFO1lBQ1osQ0FBQyxHQUFHQSxRQUFNLENBQUMsQ0FBQyxFQUFFLEVBQUUsRUFBRSxDQUFDLENBQUMsQ0FBQTtZQUNwQixJQUFJLENBQUMsS0FBSyxDQUFDO2dCQUFFLE1BQUs7WUFDbEIsSUFBSSxDQUFDLEtBQUssRUFBRTtnQkFBRSxPQUFPLEtBQUssQ0FBQTtZQUMxQixDQUFDLEVBQUUsQ0FBQTtTQUNKO1FBQ0QsSUFBSSxDQUFDLEtBQUssQ0FBQztZQUFFLE9BQU8sS0FBSyxDQUFBO0tBQzFCLFFBQVEsRUFBRSxVQUFVLEtBQUssQ0FBQyxFQUFDO0lBRTVCLE9BQU8sSUFBSSxDQUFBO0FBQ2IsQ0FBQztBQVdELElBQW1CLFdBQVcsRUFBRTtJQUM5QixNQUFNLEVBQUUsVUFBVSxFQUFFLFlBQVksRUFBRSxHQUFHLE9BQU8sQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFBO0lBQzlELE1BQU0sUUFBUSxHQUFHLENBQUUsWUFBd0IsQ0FBQTs7SUFFM0MsSUFBSSxRQUFRLEVBQUU7UUFDWixVQUFVLENBQUMsRUFBRSxDQUFDLFNBQVMsRUFBRSxVQUFVLElBQXFCO1lBQ3RELE1BQU0sT0FBTyxHQUFHLGdCQUFnQixDQUFDLElBQUksQ0FBQyxHQUFHLEVBQUUsSUFBSSxDQUFDLFVBQVUsQ0FBQyxDQUFBO1lBQzNELE1BQU0sR0FBRyxHQUFvQjtnQkFDM0IsT0FBTyxFQUFFLE9BQU87Z0JBQ2hCLEtBQUssRUFBRSxJQUFJLENBQUMsR0FBRztnQkFDZixFQUFFLEVBQUUsSUFBSSxDQUFDLEVBQUU7YUFDWixDQUFBO1lBQ0QsVUFBVSxDQUFDLFdBQVcsQ0FBQyxHQUFHLENBQUMsQ0FBQTtTQUM1QixDQUFDLENBQUE7S0FDSDs7O0FDelpIOzs7Ozs7Ozs7Ozs7Ozs7U0FlZ0IsS0FBSyxDQUFFLFNBQWlCLEVBQUUsYUFBcUIsRUFBRTtJQUMvRCxJQUFJLFNBQVMsR0FBRyxDQUFDO1FBQUUsTUFBTSxJQUFJLFVBQVUsQ0FBQyx1QkFBdUIsQ0FBQyxDQUFBOztJQUdoRSxJQUFJLENBQUMsV0FBVyxFQUFFO1FBQ2hCLElBQUksR0FBRyxHQUFHLEVBQUUsQ0FBQTtRQUNaLEdBQUc7WUFDRCxHQUFHLEdBQUcsVUFBVSxDQUFDLFlBQVksQ0FBQyxTQUFTLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQTtTQUNoRCxRQUFRLENBQUMsZ0JBQWdCLENBQUMsR0FBRyxFQUFFLFVBQVUsQ0FBQyxFQUFDO1FBQzVDLE9BQU8sSUFBSSxPQUFPLENBQUMsQ0FBQyxPQUFPLE9BQU8sT0FBTyxDQUFDLEdBQUcsQ0FBQyxDQUFBLEVBQUUsQ0FBQyxDQUFBO0tBQ2xEO0lBQ0QsT0FBTyxJQUFJLE9BQU8sQ0FBQyxDQUFDLE9BQU8sRUFBRSxNQUFNO1FBQ2pDLE1BQU0sVUFBVSxHQUFhLEVBQUUsQ0FBQTtRQUMvQixNQUFNLFVBQVUsR0FBRyxDQUFDLEdBQW9CLEVBQUUsU0FBaUI7WUFDekQsSUFBSSxHQUFHLENBQUMsT0FBTyxFQUFFOztnQkFFZixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsVUFBVSxDQUFDLE1BQU0sRUFBRSxDQUFDLEVBQUUsRUFBRTtvQkFDMUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLFNBQVMsRUFBRSxDQUFBO2lCQUMxQjtnQkFDRCxPQUFPLFVBQVUsQ0FBQyxNQUFNLEdBQUcsQ0FBQyxFQUFFO29CQUM1QixVQUFVLENBQUMsR0FBRyxFQUFFLENBQUE7aUJBQ2pCO2dCQUNELE9BQU8sQ0FBQyxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUE7YUFDbkI7aUJBQU07Z0JBQ0wsTUFBTSxHQUFHLEdBQUcsWUFBWSxDQUFDLFNBQVMsRUFBRSxJQUFJLENBQUMsQ0FBQTtnQkFDekMsTUFBTSxHQUFHLEdBQUcsVUFBVSxDQUFDLEdBQUcsQ0FBQyxDQUFBO2dCQUMzQixJQUFJO29CQUNGLE1BQU0sV0FBVyxHQUFvQjt3QkFDbkMsR0FBRyxFQUFFLEdBQUc7d0JBQ1IsVUFBVSxFQUFFLFVBQVU7d0JBQ3RCLEVBQUUsRUFBRSxHQUFHLENBQUMsRUFBRTtxQkFDWCxDQUFBO29CQUNELFNBQVMsQ0FBQyxXQUFXLENBQUMsV0FBVyxDQUFDLENBQUE7aUJBQ25DO2dCQUFDLE9BQU8sS0FBSyxFQUFFOztpQkFFZjthQUNGO1NBQ0YsQ0FBQTtRQVFNO1lBQ0wsTUFBTSxFQUFFLElBQUksRUFBRSxHQUFHLE9BQU8sQ0FBQyxJQUFJLENBQUMsQ0FBQTtZQUM5QixNQUFNLEVBQUUsTUFBTSxFQUFFLEdBQUcsT0FBTyxDQUFDLGdCQUFnQixDQUFDLENBQUE7WUFDNUMsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLElBQUksRUFBRSxDQUFDLE1BQU0sR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLEVBQUU7Z0JBQzFDLE1BQU0sU0FBUyxHQUFHLElBQUksTUFBTSxDQUFDLFVBQVUsQ0FBQyxDQUFBO2dCQUN4QyxTQUFTLENBQUMsRUFBRSxDQUFDLFNBQVMsRUFBRSxDQUFDLEdBQW9CLEtBQUssVUFBVSxDQUFDLEdBQUcsRUFBRSxTQUFTLENBQUMsQ0FBQyxDQUFBO2dCQUM3RSxVQUFVLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxDQUFBO2FBQzNCO1NBQ0Y7UUFDRCxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsVUFBVSxDQUFDLE1BQU0sRUFBRSxDQUFDLEVBQUUsRUFBRTtZQUMxQyxRQUFRLENBQUMsU0FBUyxFQUFFLElBQUksQ0FBQyxDQUFDLElBQUksQ0FBQyxVQUFVLEdBQXNCO2dCQUM3RCxNQUFNLEdBQUcsR0FBRyxVQUFVLENBQUMsR0FBRyxDQUFDLENBQUE7Z0JBQzNCLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxXQUFXLENBQUM7b0JBQ3hCLEdBQUcsRUFBRSxHQUFHO29CQUNSLFVBQVUsRUFBRSxVQUFVO29CQUN0QixFQUFFLEVBQUUsQ0FBQztpQkFDTixDQUFDLENBQUE7YUFDSCxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxDQUFBO1NBQ2pCO0tBQ0YsQ0FBQyxDQUFBO0FBQ0osQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7U0FZZ0IsU0FBUyxDQUFFLFNBQWlCLEVBQUUsYUFBcUIsRUFBRTtJQUNuRSxJQUFJLFNBQVMsR0FBRyxDQUFDO1FBQUUsTUFBTSxJQUFJLFVBQVUsQ0FBQyx1QkFBdUIsQ0FBQyxDQUFBO0lBQ2hFLElBQUksR0FBRyxHQUFHLEVBQUUsQ0FBQTtJQUNaLEdBQUc7UUFDRCxHQUFHLEdBQUcsVUFBVSxDQUFDLFlBQVksQ0FBQyxTQUFTLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQTtLQUNoRCxRQUFRLENBQUMsZ0JBQWdCLENBQUMsR0FBRyxFQUFFLFVBQVUsQ0FBQyxFQUFDO0lBQzVDLE9BQU8sR0FBRyxDQUFBO0FBQ1o7Ozs7In0=
|